计算机技术与控制工程 |
|
|
|
|
改进Transformer的肺部CT图像超分辨率重建 |
刘杰1( ),吴优1,田佳禾2,韩轲3 |
1. 哈尔滨理工大学 测控技术与通信工程学院,黑龙江 哈尔滨 150080 2. 哈尔滨理工大学 荣成学院,山东 威海 264300 3. 哈尔滨商业大学 计算机与信息工程学院,黑龙江 哈尔滨 150028 |
|
Based on improved Transformer for super-resolution reconstruction of lung CT images |
Jie LIU1( ),You WU1,Jiahe TIAN2,Ke HAN3 |
1. School of Measurement-Control Technology and Communications Engineering, Harbin University of Science and Technology, Harbin 150080, China 2. Rongcheng Campus, Harbin University of Science and Technology, Weihai 264300, China 3. School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China |
引用本文:
刘杰,吴优,田佳禾,韩轲. 改进Transformer的肺部CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2025, 59(7): 1434-1442.
Jie LIU,You WU,Jiahe TIAN,Ke HAN. Based on improved Transformer for super-resolution reconstruction of lung CT images. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1434-1442.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1434
|
1 |
范金河. 基于深度学习的超分辨率CT图像重建算法研究[D]. 绵阳: 西南科技大学, 2023: 1–66. FAN Jinhe. Research on super-resolution CT image reconstruction algorithm based on deep learning [D]. Mianyang: Southwest University of Science and Technology, 2023: 1–66.
|
2 |
赵小强, 王泽, 宋昭漾, 等 基于动态注意力网络的图像超分辨率重建[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1487- 1494 ZHAO Xiaoqiang, WANG Ze, SONG Zhaoyang, et al Image super-resolution reconstruction based on dynamic attention network[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1487- 1494
|
3 |
郑跃坤, 葛明锋, 常智敏, 等 基于残差网络的结直肠内窥镜图像超分辨率重建方法[J]. 中国光学(中英文), 2023, 16 (5): 1022- 1033 ZHENG Yuekun, GE Mingfeng, CHANG Zhimin, et al Super-resolution reconstruction for colorectal endoscopic images based on a residual network[J]. Chinese Optics, 2023, 16 (5): 1022- 1033
doi: 10.37188/CO.2022-0247
|
4 |
李嫣, 任文琦, 张长青, 等 基于真实退化估计与高频引导的内窥镜图像超分辨率重建[J]. 自动化学报, 2024, 50 (2): 334- 347 LI Yan, REN Wenqi, ZHANG Changqing, et al Super-resolution of endoscopic images based on real degradation estimation and high-frequency guidance[J]. Acta Automatica Sinica, 2024, 50 (2): 334- 347
|
5 |
宋全博, 李扬科, 范业莹, 等 先验GAN的CBCT牙齿图像超分辨率方法[J]. 计算机辅助设计与图形学学报, 2023, 35 (11): 1751- 1759 SONG Quanbo, LI Yangke, FAN Yeying, et al CBCT tooth images super-resolution method based on GAN prior[J]. Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (11): 1751- 1759
|
6 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Conference on Neural Information Processing Systems. Long Beach: MIT Press, 2017: 6000–6010.
|
7 |
LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using swin transformer [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833–1844.
|
8 |
吕鑫栋, 李娇, 邓真楠, 等 基于改进Transformer的结构化图像超分辨网络[J]. 浙江大学学报: 工学版, 2023, 57 (5): 865- 874 LV Xindong, LI Jiao, DENG Zhennan, et al Structured image super-resolution network based on improved Transformer[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 865- 874
|
9 |
YU P, ZHANG H, KANG H, et al. RPLHR-CT dataset and transformer baseline for volumetric super-resolution from CT scans [C]// Medical Image Computing and Computer Assisted Intervention. [S. l.]: Springer, 2022: 344–353.
|
10 |
赵凯光. 基于深度学习的肺部CT图像超分辨率重建[D]. 长春: 长春理工大学, 2022: 1–55. ZHAO Kaiguang. Deep learning based on super-resolution reconstruction of lung CT images [D]. Changchun: Changchun University of Science and Technology, 2022: 1–55.
|
11 |
刘伟. 基于深度学习的三维头部MRI超分辨率重建[D]. 桂林: 桂林电子科技大学, 2022: 1–54. LIU Wei. 3D Head MRI super-resolution reconstruction based on deep learning [D]. Guilin: Guilin University of Electronic Technology, 2023: 1–54.
|
12 |
李光远. 基于深度学习的磁共振成像超分辨率重建[D]. 烟台: 烟台大学, 2023: 1–77. LI Guangyuan. Deep learning-based magnetic resonance imaging super-resolution reconstruction [D]. Yantai: Yantai University, 2023: 1–77.
|
13 |
李众, 王雅婧, 马巧梅 基于空洞卷积的医学图像超分辨率重建算法[J]. 计算机应用, 2023, 43 (9): 2940- 2947 LI Zhong, WANG Yajing, MA Qiaomei Super-resolution reconstruction algorithm of medical images based on dilated convolution[J]. Journal of Computer Applications, 2023, 43 (9): 2940- 2947
|
14 |
YANG X, HE X, ZHAO J, et al. COVID-CT-dataset: a CT scan dataset about COVID-19 [EB/OL]. (2020−06−17)[2024−07−18]. https://arxiv.org/pdf/2003.13865.
|
15 |
SOARES E, ANGELOV P, BIASO S, et al. SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification [EB/OL]. (2020−05−14)[2024−07−18]. https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v3.full.pdf.
|
16 |
WANG C, LV X, SHAO M, et al A novel fuzzy hierarchical fusion attention convolution neural network for medical image super-resolution reconstruction[J]. Information Sciences, 2023, 622: 424- 436
doi: 10.1016/j.ins.2022.11.140
|
17 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
|
18 |
WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe: IEEE, 2018: 1451–1460.
|
19 |
SONG Z, ZHAO X, HUI Y, et al Progressive back-projection network for COVID-CT super-resolution[J]. Computer Methods and Programs in Biomedicine, 2021, 208: 106193
doi: 10.1016/j.cmpb.2021.106193
|
20 |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5718–5729.
|
21 |
FANG J, LIN H, CHEN X, et al. A hybrid network of CNN and transformer for lightweight image super-resolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 1102–1111.
|
22 |
CHEN Z, YANG L, LAI J H, et al. CuNeRF: cube-based neural radiance field for zero-shot medical image arbitrary-scale super resolution [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 21128–21138.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|