Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2576-2584    DOI: 10.3785/j.issn.1008-973X.2025.12.012
交通工程、土木工程     
空间异质性下共享单车出行量的非线性影响
路庆昌(),袁康洁
长安大学 电子与控制工程学院,陕西 西安 710064
Nonlinear effects of bike-sharing demands considering spatial heterogeneity
Qingchang LU(),Kangjie YUAN
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
 全文: PDF(1820 KB)   HTML
摘要:

为了探究空间异质性对建成环境与共享单车出行量之间非线性关系的影响,构建考虑空间异质性的GW-XGBoost模型,采用SHAP模型解释建成环境因素的作用程度和空间差异. 相较于地理加权回归和极端梯度提升树模型,模型GW-XGBoost通过引入地理空间加权和自适应带宽显著提升了模型解释力和预测力,整体拟合优度平均提高15.59%,同时能够揭示建成环境对单车出行量非线性影响的强度方向和局部差异. 结果显示,建成环境因素对单车出行量呈现非线性影响. 在人口密度增加到20 000 人/km2后,影响由负转正;离CBD的距离位于15~20 km时,由中心向外围影响效应由正转负随后趋于平稳;在容积率增加到1.8后,影响效应由负转正. 研究结果为城市共享单车系统的资源优化提供科学依据和方法支撑.

关键词: 共享单车建成环境机器学习空间异质性非线性影响    
Abstract:

A GW-XGBoost model considering spatial heterogeneity was constructed, and the SHAP model was used to explain the extent and spatial differences in the role of built environment factors, in order to explore the influence of spatial heterogeneity on the nonlinear relationship between the built environment and bike-sharing trips. Compared with the geographically weighted regression and extreme gradient boosting tree models, the GW-XGBoost model significantly improved the explanatory and predictive power of the model by introducing geospatial weighting and adaptive bandwidth, with the overall goodness-of-fit increased by 15.59% on average, and it could reveal the intensity, direction and local differences of the built environment on the nonlinear impact of bike-sharing trips. The results showed that the built environment factors had a nonlinear impact on bike-sharing trips. When the population density reached 20000 persons per km2, the impact turned from negative to positive. When the distance from CBD factor was between 15 and 20 km, its effect shifted from positive to negative, and then became stabilized when moving outward from the city center. When the floor area ratio reached 1.8, the impact effect turned from negative to positive. The research results provide a scientific basis and methodological support for the resource optimization of the urban bike-sharing system.

Key words: bike-sharing    built environment    machine learning    spatial heterogeneity    nonlinear effect
收稿日期: 2024-12-27 出版日期: 2025-11-25
CLC:  U 491.1  
基金资助: 国家自然科学基金资助项目(72471035).
作者简介: 路庆昌(1984—),男,教授,博士,从事智能交通系统分析、交通行为与环境研究. orcid.org/0000-0001-9616-2271. E-mail:qclu@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
路庆昌
袁康洁

引用本文:

路庆昌,袁康洁. 空间异质性下共享单车出行量的非线性影响[J]. 浙江大学学报(工学版), 2025, 59(12): 2576-2584.

Qingchang LU,Kangjie YUAN. Nonlinear effects of bike-sharing demands considering spatial heterogeneity. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2576-2584.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.012        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2576

图 1  研究区域及共享单车出行量分布图
变量类别变量名平均值标准差最小值最大值VIFMoran’s Iz得分
1)注:*表示p值小于0.05,**表示p值小于0.01.
共享单车出行量/万4.7560.815043.997/0.785**1)31.9116
密度容积率0.9850.90004.6768.5170.589*24.273
人口密度/(人·km?211 704.79810 131.176042 209.8425.4610.687**28.609
多样性土地利用混合度0.7510.52702.0241.7290.408*16.852
餐饮类POI密度/(个·km?2175.322244.34801 595.0844.8220.409*16.498
工作类POI密度/(个·km?2188.802321.09305 991.5261.9010.378*16.442
住宅类POI密度/(个·km?238.12045.0660298.1716.7990.528**21.363
休闲类POI密度/(个·km?224.14933.1090229.6353.8730.518*21.278
道路设计支路密度/(km·km?23.7513.074022.7941.5250.313*13.042
自行车道密度/(km·km?20.5531.289012.1151.0390.366*15.456
区位条件到CBD的距离/km20.3079.5460.60039.7121.4530.991**40.149
公共交通可达性公交站点密度/(个·km?24.3723.994024.1473.4160.424*18.036
地铁站点密度/(个·km?20.2030.46802.9931.7410.334*14.376
表 1  变量描述性统计及检验结果
模型名称R2MSEMAE
GWR0.58227.1084.216
XGBoost0.6748.7582.230
GW-XGBoost最小值0.6116.9041.244
最大值0.7868.6492.579
平均值0.7227.6281.850
表 2  模型性能比较
图 2  GW-XGBoost模型R2的分布
图 3  影响变量的相对重要性
变量SHAP
最小值最大值平均值标准差
容积率?1.07613.569?0.0291.547
人口密度?1.26310.999?0.0401.920
土地利用混合度?0.7051.3610.0310.145
餐饮类POI密度?0.7262.793?0.0500.304
工作类POI密度?0.4140.7600.0280.137
住宅类POI密度?0.8224.3190.0560.843
休闲类POI密度?0.4761.6680.0140.323
支路密度?0.8300.9900.0420.244
自行车道密度?0.3413.078?0.0110.343
到CBD的距离?2.8666.111?0.0751.379
公交站点密度?1.1412.4130.0150.215
地铁站点密度?1.2260.682?0.0060.133
表 3  GW-XGBoost模型的局部SHAP
图 4  人口密度SHAP分布
图 5  到CBD的距离SHAP分布
图 6  容积率SHAP分布
图 7  人口密度对共享单车出行量的影响
图 8  到CBD的距离对共享单车出行量的影响
图 9  容积率对共享单车出行量的影响
1 EREN E, UZ V E A review on bike-sharing: the factors affecting bike-sharing demand[J]. Sustainable Cities and Society, 2020, 54: 101882
doi: 10.1016/j.scs.2019.101882
2 CHEN Z, VAN LIEROP D, ETTEMA D Dockless bike-sharing systems: what are the implications?[J]. Transport Reviews, 2020, 40 (3): 333- 353
doi: 10.1080/01441647.2019.1710306
3 WANG X, LINDSEY G, SCHONER J E, et al Modeling bike share station activity: effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2016, 142: 04015001
doi: 10.1061/(ASCE)UP.1943-5444.0000273
4 ALCORN L G, JIAO J Bike-sharing station usage and the surrounding built environments in major Texas Cities[J]. Journal of Planning Education and Research, 2023, 43 (1): 122- 135
doi: 10.1177/0739456X19862854
5 WU C, KIM I, CHUNG H The effects of built environment spatial variation on bike-sharing usage: a case study of Suzhou, China[J]. Cities, 2021, 110: 103063
doi: 10.1016/j.cities.2020.103063
6 SUN Y, WANG Y, WU H How does the urban built environment affect dockless bikesharing-metro integration cycling? Analysis from a nonlinear comprehensive perspective[J]. Journal of Cleaner Production, 2024, 449: 141770
doi: 10.1016/j.jclepro.2024.141770
7 徐标, 路庆昌 共享单车停车需求的多尺度时空影响因素[J]. 浙江大学学报: 工学版, 2023, 57 (2): 380- 391
XU Biao, LU Qingchang Multi-scale spatiotemporal influencing factors of bike-sharing parking demand[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (2): 380- 391
8 YANG L, YU B, LIANG Y, et al Time-varying and non-linear associations between metro ridership and the built environment[J]. Tunnelling and Underground Space Technology, 2023, 132: 104931
doi: 10.1016/j.tust.2022.104931
9 DING C, CAO X, WANG Y Synergistic effects of the built environment and commuting programs on commute mode choice[J]. Transportation Research Part A: Policy and Practice, 2018, 118: 104- 118
doi: 10.1016/j.tra.2018.08.041
10 HATAMI F, RAHMAN M M, NIKPARVAR B, et al Non-linear associations between the urban built environment and commuting modal split: a random forest approach and SHAP evaluation[J]. IEEE Access, 2023, 11: 12649- 12662
doi: 10.1109/ACCESS.2023.3241627
11 WANG S, GAO K, ZHANG L, et al Geographically weighted machine learning for modeling spatial heterogeneity in traffic crash frequency and determinants in US[J]. Accident Analysis and Prevention, 2024, 199: 107528
doi: 10.1016/j.aap.2024.107528
12 LV H, LI H, CHEN Y, et al An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning[J]. Journal of Transport Geography, 2023, 113: 103716
doi: 10.1016/j.jtrangeo.2023.103716
13 WANG Y, ZHAN Z, MI Y, et al Nonlinear effects of factors on dockless bike-sharing usage considering grid-based spatiotemporal heterogeneity[J]. Transportation Research Part D: Transport and Environment, 2022, 104: 103194
doi: 10.1016/j.trd.2022.103194
14 ZHOU T, FENG T, KEMPERMAN A Assessing the effects of the built environment and microclimate on cycling volume[J]. Transportation Research Part D: Transport and Environment, 2023, 124: 103936
doi: 10.1016/j.trd.2023.103936
15 ZHU B, HU S, KAPARIAS I, et al Revealing the driving factors and mobility patterns of bike-sharing commuting demands for integrated public transport systems[J]. Sustainable Cities and Society, 2024, 104: 105323
doi: 10.1016/j.scs.2024.105323
16 深圳市人大常委会. 深圳经济特区互联网租赁自行车管理若干规定[EB/OL]. (2021−07−06) [2024−12−20]. https://www.szrd.gov.cn/v2/zx/szfg/content/post_966176.html.
17 WU J, TA N, SONG Y, et al Urban form breeds neighborhood vibrancy: a case study using a GPS-based activity survey in suburban Beijing[J]. Cities, 2018, 74: 100- 108
doi: 10.1016/j.cities.2017.11.008
18 仝德, 高静, 龚咏喜 城中村对深圳市职住空间融合的影响: 基于手机信令数据的研究[J]. 北京大学学报: 自然科学版, 2020, 56 (6): 1091- 1101
TONG De, GAO Jing, GONG Yongxi Impact of urban village on job-housing balance in Shenzhen: a study using mobile phone signaling data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56 (6): 1091- 1101
19 LI M, TU W, TONG H, et al Quantifying the nighttime economy–housing separation from a human activity standpoint: a case study in Shenzhen, China[J]. Cities, 2024, 148: 104894
doi: 10.1016/j.cities.2024.104894
20 朱岑远, 郑乐, 张毅萌 基于MGWR的共享单车空间异质性分析[J]. 物流科技, 2024, 47 (24): 72- 77
ZHU Cenyuan, ZHENG Yue, ZHANG Yimeng Spatial heterogeneity analysis of bikesharing based on MGWR[J]. Logistics Sci-Tech, 2024, 47 (24): 72- 77
21 YAO Y, LIU X, LI X, et al Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata[J]. International Journal of Geographical Information Science, 2017, 31 (12): 2452- 2479
doi: 10.1080/13658816.2017.1360494
22 GUO Y, YANG L, CHEN Y Bike share usage and the built environment: a review[J]. Frontiers in Public Health, 2022, 10: 848169
doi: 10.3389/fpubh.2022.848169
23 孙艺玲, 仝德, 曹超 城市建成环境对公共自行车使用的影响机制研究: 以深圳市南山区为例[J]. 北京大学学报: 自然科学版, 2018, 54 (6): 1325- 1331
SUN Yiling, TONG De, CAO Chao How urban built environment affects the use of public bicycles: a case study of Nanshan District of Shenzhen[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54 (6): 1325- 1331
24 关昊天, 戢晓峰, 李武, 等 建成环境对共享单车与地铁组合出行的影响关系[J]. 交通运输系统工程与信息, 2024, 24 (4): 200- 211
GUAN Haotian, JI Xiaofeng, LI Wu, et al Influence of built environment on integrated use of bike sharing and metro[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (4): 200- 211
25 EWING R, CERVERO R Travel and the built environment: a synthesis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1780 (1): 87- 114
doi: 10.3141/1780-10
26 CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
27 XIAO L, LO S, LIU J, et al Nonlinear and synergistic effects of TOD on urban vibrancy: applying local explanations for gradient boosting decision tree[J]. Sustainable Cities and Society, 2021, 72: 103063
doi: 10.1016/j.scs.2021.103063
28 YANG W, LI Y, LIU Y, et al Environmental factors for outdoor jogging in Beijing: insights from using explainable spatial machine learning and massive trajectory data[J]. Landscape and Urban Planning, 2024, 243: 104969
doi: 10.1016/j.landurbplan.2023.104969
29 成骋, 陈文栋, 马洪生, 等 基于Leiden算法的共享单车活动社区识别方法: 南京案例分析[J]. 交通信息与安全, 2023, 41 (2): 103- 111,156
CHENG Cheng, CHEN Wendong, MA Hongsheng, et al A method for identifying operation zones of free-floating shared bikes based on leiden algorithm: a case study of the city of Nanjing[J]. Journal of Transport Information and Safety, 2023, 41 (2): 103- 111,156
30 WANG J, WANG Z, WANG Z, et al Exploring the effect of neighbouring built and demographic environment on station-level bike-sharing trips under COVID-19[J]. Journal of Transport and Health, 2024, 36: 101818
31 BI H, LI A, HUA M, et al Examining the varying influences of built environment on bike-sharing commuting: empirical evidence from Shanghai[J]. Transport Policy, 2022, 129: 51- 65
doi: 10.1016/j.tranpol.2022.10.004
32 严亚磊, 于涛, 沈丽珍 共享单车出行的建成环境影响机制: 以上海市为例[J]. 上海城市规划, 2020, (6): 85- 91
YAN Yalei, YU Tao, SHEN Lizhen The impact mechanism of built environment on shared bikes travel: a case study of Shanghai[J]. Shanghai Urban Planning Review, 2020, (6): 85- 91
[1] 王福建,张泽天,陈喜群,王殿海. 基于多通道图聚合注意力机制的共享单车借还量预测[J]. 浙江大学学报(工学版), 2025, 59(9): 1986-1995.
[2] 王冲,戴理朝,陈斌. 基于高斯过程回归的锈蚀RC梁抗剪承载力概率模型[J]. 浙江大学学报(工学版), 2025, 59(11): 2352-2360.
[3] 李攀,周兵,柴天,邓园,潘倩兮,吴晓建. 考虑驾驶风格的车辆避障控制系统[J]. 浙江大学学报(工学版), 2024, 58(7): 1377-1386.
[4] 李昕阳,刘为锋,郭旭宁,李云玲,朱非林,钟平安. 流域风光水电出力互补特性[J]. 浙江大学学报(工学版), 2024, 58(7): 1505-1515.
[5] 霍育福,金蓓弘,廖肇翊. 多模态信息增强的短视频推荐模型[J]. 浙江大学学报(工学版), 2024, 58(6): 1142-1152.
[6] 李素,陈泽,宋宝燕,张浩林. 营商环境评估的企业级复合区块链构建方法[J]. 浙江大学学报(工学版), 2024, 58(5): 891-899.
[7] 黄龙森,房俊,周云亮,郭志城. 基于变分自编码器的近似聚合查询优化方法[J]. 浙江大学学报(工学版), 2024, 58(5): 931-940.
[8] 徐标,路庆昌. 共享单车停车需求的多尺度时空影响因素[J]. 浙江大学学报(工学版), 2023, 57(2): 380-391.
[9] 高一聪,王彦坤,费少梅,林琼. 基于迁移学习的机械制图智能评阅方法[J]. 浙江大学学报(工学版), 2022, 56(5): 856-863, 889.
[10] 张鹏,田子都,王浩. 基于改进生成对抗网络的飞参数据异常检测方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1967-1976.
[11] 黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.
[12] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[13] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[14] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[15] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.