Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1505-1515    DOI: 10.3785/j.issn.1008-973X.2024.07.020
机械工程、能源工程     
流域风光水电出力互补特性
李昕阳1(),刘为锋2,*(),郭旭宁2,李云玲2,朱非林3,钟平安3
1. 天津大学 建筑工程学院,天津 300072
2. 水利部水利水电规划设计总院 水战略研究一处,北京 100120
3. 河海大学 水文水资源学院,江苏 南京 210098
Complementary characteristics of wind-photovoltaic-hydropower output in basin
Xinyang LI1(),Weifeng LIU2,*(),Xuning GUO2,Yunling LI2,Feilin ZHU3,Ping’an ZHONG3
1. School of Civil Engineering, Tianjin University, Tianjin 300072, China
2. Water Strategy Research Unit One, MWR General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China
3. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
 全文: PDF(2581 KB)   HTML
摘要:

定量评估风光水能源出力互补特性对风光水电站规模布局以及互补优化调度具有重要意义,现有互补特性评价指标仅适用于评价两能源互补特性. 为此建立适合三能源互补特性评价的指标体系,结合历史气象资料,探明雅砻江流域风光水电出力长期互补特性. 针对风光水电出力受气象条件的显著影响和短期互补特性的复杂性,结合机器学习理论,提出风光水电出力短期典型日智能筛选模型,剖析不同时间计算步长对风光水电出力互补特性评价结果的差异. 计算结果表明,长期尺度风光能源出力对水电能源呈现电量补偿特性,使水电能源的发电效益提高3%;短期尺度水电能源出力对风光能源出力具有较好的电力补偿效益,水电补偿后风光弃电率减小了18个百分点,出力短缺率减小了28个百分点.

关键词: 风光水电出力互补性分析三能源互补性指标机器学习雅砻江流域    
Abstract:

The Quantitative assessment of the complementary characteristics of wind-photovoltaic-hydropower power output is important for the layout and optimized scheduling of wind-photovoltaic-hydropower systems. Existing indicators for evaluating complementary characteristics are only applicable to assessing the complementary characteristics between two energy sources. Indicators suitable for evaluating the complementary characteristics of three energy sources were established. Combining historical meteorological data, the long-term complementary characteristics of wind-photovoltaic-hydropower output in the Yalong River basin were revealed. In response to the significant impact of meteorological conditions on wind-photovoltaic-hydropower output and the complexity of short-term complementary characteristics, an intelligent screening model for short-term typical days of wind-photovoltaic-hydropower output was proposed, integrating with machine learning theory. The differences in evaluation results of wind-photovoltaic-hydropower output complementary characteristics under different time calculation steps were analyzed. The results show that at a long-term scale, wind and solar power output compensates for hydropower output, enhancing the hydroelectric energy generation efficiency by 3%. At a short-term scale, hydropower output demonstrated favorable electricity compensation benefits for wind and solar power output, with the wind and solar curtailment rate reduced by 18 percentage points and the output shortage rate reduced by 28 percentage points after hydropower compensation.

Key words: wind-photovoltaic-hydropower output    complementarity analysis    tri-energy complementarity index    machine learning    Yalong River basin
收稿日期: 2023-06-11 出版日期: 2024-07-01
CLC:  TP 393  
基金资助: 国家重点研发计划重点专项(2022YF3202300);水利部水利青年拔尖人才项目;水利水电规划设计总院“揭榜挂帅”项目;中国博士后科学基金资助项目(2021M702313);中央高校基本科研业务费专项资金资助项目(B240201123).
通讯作者: 刘为锋     E-mail: 842212007@qq.com;weifliu@qq.com
作者简介: 李昕阳(1999—),女,博士生,从事水资源规划与战略研究及风光水多能互补优化调度研究. orcid.org/0009-0002-1750-1365. E-mail:842212007@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李昕阳
刘为锋
郭旭宁
李云玲
朱非林
钟平安

引用本文:

李昕阳,刘为锋,郭旭宁,李云玲,朱非林,钟平安. 流域风光水电出力互补特性[J]. 浙江大学学报(工学版), 2024, 58(7): 1505-1515.

Xinyang LI,Weifeng LIU,Xuning GUO,Yunling LI,Feilin ZHU,Ping’an ZHONG. Complementary characteristics of wind-photovoltaic-hydropower output in basin. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1505-1515.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1505

图 1  两能源出力的互补性示意图
图 2  风光水电出力综合向量示意图
图 3  欧式距离计算示意图
图 4  动态时间弯曲距离算法的对齐方式和弯曲路径示意图
图 5  K-Means-DTW算法筛选典型日流程图
图 6  标准化后风光水的月平均出力
图 7  风光能源在长期尺度对水电能源提供电量补偿
图 8  确定最优聚类数
算法运行次数SSE
K-Means-EDK-Means-DTW
1756334
2769329
3749321
4761344
5763344
6752326
7762335
8752324
9746335
10760335
平均值757333
方差5360
表 1  不同算法的簇内误差平方和
图 9  基于K-Means-ED算法的典型日筛选
图 10  基于K-Means-DTW的典型日筛选
图 11  各个典型日风光水电出力过程
典型日${k_t}\left( {\boldsymbol{r}} \right)$互补等级
a0.703中等互补
b0.624弱互补
c0.522弱互补
d0.538弱互补
e0.764中等互补
f0.852较互补
g0.670中等互补
h0.776中等互补
表 2  各个典型日风光水电出力的综合互补系数
图 12  能源组合出力在小时尺度对综合互补系数的贡献
图 13  水电出力在短期尺度对风光出力提供电力补偿
典型日无水电补偿有水电补偿
${\eta _1}$${\eta _2}$${\eta _1}$${\eta _2}$
a028.2400
b0.9417.5600
c17.7716.720.490
d11.1814.9500
e13.9210.270.380
f12.141.7600
g13.9310.701.150
h19.017.230.700
表 3  在短期尺度有无水电补偿对风光出力的影响
计算时段${\boldsymbol{r}}$${L_p}\left( {\boldsymbol{r}} \right)$${k_t}\left( {\boldsymbol{r}} \right)$
长期$ - 0.336{{\boldsymbol{D}}_{{\mathrm{ws}}}} - 0.851{{\boldsymbol{D}}_{{\mathrm{wh}}}}+0.259{{\boldsymbol{D}}_{{\mathrm{sh}}}} $1.03600.873
短期$ - 0.026{{\boldsymbol{D}}_{{\mathrm{ws}}}} - 0.418{{\boldsymbol{D}}_{{\mathrm{wh}}}}+0.223{{\boldsymbol{D}}_{{\mathrm{sh}}}} $1.38950.716
表 4  不同计算时段的风光水电出力互补性
图 14  能源组合出力在不同计算时段对综合互补系数的贡献
1 WANG X, MEI Y, KONG Y, et al Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system[J]. Energy, 2017, 134: 813- 839
doi: 10.1016/j.energy.2017.06.047
2 JURASZ J, BELUCO A, CANALES F A The impact of complementarity on power supply reliability of small scale hybrid energy systems[J]. Energy, 2018, 161: 737- 743
doi: 10.1016/j.energy.2018.07.182
3 MONFORTI F, HULD T, BÓDIS K, et al Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach[J]. Renewable Energy, 2014, 63: 576- 586
doi: 10.1016/j.renene.2013.10.028
4 DENAULT M, DUPUIS D, COUTURE-CARDINAL S Complementarity of hydro and wind power: improving the risk profile of energy inflows[J]. Energy Policy, 2009, 37 (12): 5376- 5384
doi: 10.1016/j.enpol.2009.07.064
5 徐维超. 相关系数研究综述[J]. 广东工业大学学报. 2012, 29(3): 12−17.
XU Weichao. A review on correlation coefficients [J]. Journal of Guangdong University of Technology , 2012, 29(3): 12−17.
6 MYERS J L, WELL A D, LORCH R F. Research design and statistical analysis [M]. New York: Routledge, 2010: 271−290.
7 LIU Y, XIAO L, WANG H, et al Analysis on the hourly spatiotemporal complementarities between China’s solar and wind energy resources spreading in a wide area[J]. Science China Technological Sciences, 2013, 56: 683- 692
doi: 10.1007/s11431-012-5105-1
8 ZHOU H, WU H, YE C, et al Integration capability evaluation of wind and photovoltaic generation in power systems based on temporal and spatial correlations[J]. Energies, 2019, 12 (1): 171
doi: 10.3390/en12010171
9 SANTOS-ALAMILLOS F J, POZO-VÁZQUEZ D, RUIZ-ARIAS J A, et al Combining wind farms with concentrating solar plants to provide stable renewable power[J]. Renewable Energy, 2015, 76: 539- 550
doi: 10.1016/j.renene.2014.11.055
10 LI Y, AGELIDIS V G, SHRIVASTAVA Y. Wind-solar resource complementarity and its combined correlation with electricity load demand [C]// 2009 4th IEEE Conference on Industrial Electronics and Applications . Xi’an: IEEE, 2009: 3623−3628.
11 DOS ANJOS P S, DA SILVA A S A, STO ŠIĆ B, et al Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil[J]. Physica A: Statistical Mechanics and its Applications, 2015, 424: 90- 96
doi: 10.1016/j.physa.2015.01.003
12 王浩, 王旭, 雷晓辉, 等 梯级水库群联合调度关键技术发展历程与展望[J]. 水利学报, 2019, 50 (1): 25- 37
WANG Hao, WANG Xu, LEI Xiaohui, et al The development and prospect of key techniques in the cascade reservoir operation[J]. Journal of Hydraulic Engineering, 2019, 50 (1): 25- 37
13 SAILOR D J, SMITH M, HART M Climate change implications for wind power resources in the Northwest United States[J]. Renewable Energy, 2008, 33 (11): 2393- 2406
14 CROOK J A, JONES L A, FORSTER P M, et al Climate change impacts on future photovoltaic and concentrated solar power energy output[J]. Energy and Environmental Science, 2011, 4 (9): 3101- 3109
15 LIU W, ZHU F, CHEN J, et al Multi-objective optimization scheduling of wind–photovoltaic–hydropower systems considering riverine ecosystem[J]. Energy Conversion and Management, 2019, 196: 32- 43
doi: 10.1016/j.enconman.2019.05.104
16 CANTÃO M P, BESSA M R, BETTEGA R, et al Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps[J]. Renewable Energy, 2017, 101: 1215- 1225
doi: 10.1016/j.renene.2016.10.012
17 KOTSIANTIS S B. Supervised machine learning: a review of classification techniques [C]// Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering . [S. l.]: IOS Press, 2007: 3−24.
18 PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825- 2830
19 LOYD S Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28 (2): 129- 137
doi: 10.1109/TIT.1982.1056489
20 李映辉. 基于数据挖掘的相似洪水动态识别方法研究及应用 [D]. 南京: 河海大学, 2019.
LI Yinghui. Similar flood dynamic recognition method based on data mining [D]. Nanjing: Hohai University, 2019.
21 王小锋, 丁义. 雅砻江流域水调自动化系统建设及应用研究 [J]. 水电与新能源, 2014(6): 46−48.
WANG Xiaofeng, DING Yi. Development and application of automatic water diversion system of Yalong River valley [J]. Hydropower and New Energy , 2014(6): 46−48.
22 李长春, 高仕春. 保证出力在水库调度中的应用探讨[J]. 水力发电. 2008, 34(8): 97−99.
LI Changchun, GAO Shichun. Discussion on application of firm power in reservoir operation [J]. Water Power , 2008, 34(8): 97−99.
23 李科. 基于多属性的车辆重识别方法研究[D]. 厦门: 厦门大学, 2019.
LI Ke. Vehicle re-identification based on multi-attribute [D]. Xiamen: Xiamen University, 2019.
24 朱连江, 马炳先, 赵学泉 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30 (Suppl.2): 139- 141
ZHU Lianjiang, MA Bingxian, ZHAO Xuequan Clustering validity analysis based on silhouette coefficient[J]. Journal of Computer Applications, 2010, 30 (Suppl.2): 139- 141
25 TIBSHIRANI R, WALTHER G, HASTIE T Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society: Statistical Methodologys, 2001, 63 (2): 411- 423
26 国家能源局. 2019年风电并网运行情况[EB/OL]. (2020-02-28)[2023-05-13]. https://www.nea.gov.cn/2020-02/28/c_138827910.htm.
[1] 李攀,周兵,柴天,邓园,潘倩兮,吴晓建. 考虑驾驶风格的车辆避障控制系统[J]. 浙江大学学报(工学版), 2024, 58(7): 1377-1386.
[2] 霍育福,金蓓弘,廖肇翊. 多模态信息增强的短视频推荐模型[J]. 浙江大学学报(工学版), 2024, 58(6): 1142-1152.
[3] 李素,陈泽,宋宝燕,张浩林. 营商环境评估的企业级复合区块链构建方法[J]. 浙江大学学报(工学版), 2024, 58(5): 891-899.
[4] 黄龙森,房俊,周云亮,郭志城. 基于变分自编码器的近似聚合查询优化方法[J]. 浙江大学学报(工学版), 2024, 58(5): 931-940.
[5] 高一聪,王彦坤,费少梅,林琼. 基于迁移学习的机械制图智能评阅方法[J]. 浙江大学学报(工学版), 2022, 56(5): 856-863, 889.
[6] 张鹏,田子都,王浩. 基于改进生成对抗网络的飞参数据异常检测方法[J]. 浙江大学学报(工学版), 2022, 56(10): 1967-1976.
[7] 黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.
[8] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[9] 战友,李强,马啸天,王郴平,邱延峻. 基于宏微观纹理特征融合的路面摩擦性能预测[J]. 浙江大学学报(工学版), 2021, 55(4): 684-694.
[10] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[11] 陈巧红,陈翊,李文书,贾宇波. 多尺度SE-Xception服装图像分类[J]. 浙江大学学报(工学版), 2020, 54(9): 1727-1735.
[12] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[13] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[14] 万志远,陶嘉恒,梁家坤,才振功,苌程,乔林,周巧妮. Stack Overflow上机器学习相关问题的大规模实证研究[J]. 浙江大学学报(工学版), 2019, 53(5): 819-828.
[15] 柯懂湘,潘丽敏,罗森林,张寒青. 基于随机森林算法的Android恶意行为识别与分类方法[J]. 浙江大学学报(工学版), 2019, 53(10): 2013-2023.