土木与交通工程 |
|
|
|
|
共享单车停车需求的多尺度时空影响因素 |
徐标( ),路庆昌*( ) |
长安大学 电子与控制工程学院,陕西 西安 710064 |
|
Multi-scale spatiotemporal influencing factors of bike-sharing parking demand |
Biao XU( ),Qing-chang LU*( ) |
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China |
1 |
BARBOUR N, ZHANG Y, MANNERING F A statistical analysis of bike sharing usage and its potential as an auto-trip substitute[J]. Journal of Transport and Health, 2019, 12: 253- 262
doi: 10.1016/j.jth.2019.02.004
|
2 |
DU Y C, DENG F W, LIAO F X A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 39- 55
doi: 10.1016/j.trc.2019.04.006
|
3 |
GU T Q, KIM I, CURRIE G Measuring immediate impacts of a new mass transit system on an existing bike-share system in China[J]. Transportation Research Part A: Policy and Practice, 2019, 124: 20- 39
doi: 10.1016/j.tra.2019.03.003
|
4 |
SHEN Y, ZHANG X H, ZHAO J H Understanding the usage of dockless bike sharing in Singapore[J]. International Journal of Sustainable Transportation, 2018, 12 (9): 686- 700
doi: 10.1080/15568318.2018.1429696
|
5 |
SHELAT S, HUISMAN R, VAN OORT N Analysing the trip and user characteristics of the combined bicycle and transit mode[J]. Research in Transportation Economics, 2018, 69: 68- 76
doi: 10.1016/j.retrec.2018.07.017
|
6 |
HUA M Z, CHEN X W, ZHENG S J, et al Estimating the parking demand of free-floating bike sharing: a journey-data-based study of Nanjing, China[J]. Journal of Cleaner Production, 2020, 244: 118764
doi: 10.1016/j.jclepro.2019.118764
|
7 |
艾媒咨询. 2017年共享单车夏季市场专题报告 [EB/OL]. (2017-06-16). https://www.iimedia.cn/c400/59210.html.
|
8 |
万敏. 基于数据的共享单车需求预测和调度研究 [D]. 南京: 南京大学, 2020. WAN Min. Research on forecasting and scheduling of shared bicycle demand based on data [D]. Nanjing: Nanjing University, 2020.
|
9 |
XU Y, CHEN D C, ZHANG X H, et al Unravel the landscape and pulses of cycling activities from a dockless bike-sharing system[J]. Computers, Environment and Urban Systems, 2019, 75: 184- 203
doi: 10.1016/j.compenvurbsys.2019.02.002
|
10 |
ZHANG Y P, LIN D, MI Z F Electric fence planning for dockless bike-sharing services[J]. Journal of Cleaner Production, 2019, 206: 383- 393
doi: 10.1016/j.jclepro.2018.09.215
|
11 |
GAO K, YANG Y, LI A Y, et al Spatial heterogeneity in distance decay of using bike sharing: an empirical large-scale analysis in Shanghai[J]. Transportation Research Part D: Transport and Environment, 2021, 94: 102814
doi: 10.1016/j.trd.2021.102814
|
12 |
严亚磊, 于涛, 沈丽珍 共享单车出行的建成环境影响机制: 以上海市为例[J]. 上海城市规划, 2020, (6): 85- 91 YAN Ya-lei, YU Tao, SHEN Li-zhen The impact mechanism of built environment on shared bike travel: a case study of Shanghai[J]. Shanghai Urban Planning Review, 2020, (6): 85- 91
doi: 10.11982/j.supr.20200612
|
13 |
WANG X Z, LINDSEY G, SCHONER J E, et al Modeling bike share station activity: effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2015, 142 (1): 04015001
|
14 |
曹小曙, 罗依 中国大陆城市建成环境与共享单车配置的关系[J]. 中山大学学报:自然科学版, 2020, 59 (1): 77- 85 CAO Xiao-shu, LUO Yi Relationship between built environment and bikeshare allocation in the mainland of China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59 (1): 77- 85
|
15 |
LI A Y, ZHAO P X, HUANG Y Z, et al An empirical analysis of dockless bike-sharing utilization and its explanatory factors: case study from Shanghai, China[J]. Journal of Transport Geography, 2020, 88: 102828
doi: 10.1016/j.jtrangeo.2020.102828
|
16 |
MA X W, JI Y J, YUAN Y F, et al A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 148- 173
doi: 10.1016/j.tra.2020.06.022
|
17 |
HUANG B, WU B, BARRY M Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24 (3): 383- 401
doi: 10.1080/13658810802672469
|
18 |
WU C, REN F, HU W, et al Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices[J]. International Journal of Geographical Information Science, 2019, 33 (3): 489- 511
doi: 10.1080/13658816.2018.1545158
|
19 |
上海统计局. 《2018年上海市国民经济和社会发展统计公报》[EB/OL]. (2019-03-01). http://tjj.sh.gov.cn/tjgb/20191115/0014-1003219.html?ivk_sa=1024320u.
|
20 |
XING Y Y, WANG K, LU J J Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China[J]. Journal of Transport Geography, 2020, 87: 102787
doi: 10.1016/j.jtrangeo.2020.102787
|
21 |
CRANEY T A, SURLES J G Model-dependent variance inflation factor cutoff values[J]. Quality Engineering, 2002, 14 (3): 391- 403
doi: 10.1081/QEN-120001878
|
22 |
马新卫, 季彦婕, 金雪, 等 租赁自行车用户出行特征及方式的影响因素分析[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1202- 1209 MA Xin-wei, JI Yan-jie, JIN Xue, et al Analysis on travel characteristics of bike-sharing users andinfluence factors on way to travel[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1202- 1209
|
23 |
FOTHERINGHAM A S, YANG W B, KANG W Multiscale geographically weighted regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107 (6): 1247- 1265
doi: 10.1080/24694452.2017.1352480
|
24 |
YU K, PARK B U, MAMMEN E Smooth backfitting in generalized additive models[J]. The Annals of Statistics, 2008, 36 (1): 228- 260
|
25 |
GAO K, YANG Y, LI A Y, et al Quantifying economic benefits from free-floating bike-sharing systems: a trip-level inference approach and city-scale analysis[J]. Transportation Research Part A: Policy and Practice, 2021, 144: 89- 103
doi: 10.1016/j.tra.2020.12.009
|
26 |
LIAO Y Ride-sourcing compared to its public-transit alternative using big trip data[J]. Journal of Transport Geography, 2021, 95: 103135
doi: 10.1016/j.jtrangeo.2021.103135
|
27 |
FOTHERINGHAM A S, CRESPO R, YAO J Geographical and temporal weighted regression (GTWR)[J]. Geographical Analysis, 2015, 47 (4): 431- 452
doi: 10.1111/gean.12071
|
28 |
MA X L, ZHANG J Y, DING C, et al A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership[J]. Computers, Environment and Urban Systems, 2018, 70: 113- 124
doi: 10.1016/j.compenvurbsys.2018.03.001
|
29 |
YANG H T, ZHANG Y B, ZHONG L Z, et al Exploring spatial variation of bike sharing trip production andattraction: a study based on Chicago’s Divvy system[J]. Applied Geography, 2020, 115: 102130
doi: 10.1016/j.apgeog.2019.102130
|
30 |
HAMPSHIRE R C, MARLA L. An analysis of bike sharing usage: explaining trip generation and attraction from observed demand [C]// 91st Annual Meeting of the Transportation Research Board. Washington, DC: TRB, 2012: 12-2099.
|
31 |
莫海彤, 魏宗财, 翟青 老城区共享单车出行特征及影响因素研究: 以广州为例[J]. 南方建筑, 2019, (1): 7- 12 MO Hai-tong, WEI Zong-cai, ZHAI Qing Travel behaviors and influencing factors of bike sharing in old town: the case of Guangzhou[J]. South Architecture, 2019, (1): 7- 12
doi: 10.3969/j.issn.1000-0232.2019.01.007
|
32 |
ZHANG Y, THOMAS T, BRUSSEL M, et al Exploring the impact of built environment factors on the use of publicbikes at bike stations: case study in Zhongshan, China[J]. Journal of Transport Geography, 2017, 58: 59- 70
doi: 10.1016/j.jtrangeo.2016.11.014
|
33 |
TAN X Y, ZHU X L, LI Q, et al Tidal phenomenon of the dockless bike-sharing system and its causes: the case of Beijing[J]. International Journal of Sustainable Transportation, 2022, 16 (4): 287- 300
doi: 10.1080/15568318.2020.1871129
|
34 |
高楹, 宋辞, 郭思慧, 等 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23 (1): 155- 170 GAO Ying, SONG Ci, GUO Si-hui, et al Spatial-temporal characteristics and influencing factors of source and sink of dockless sharing bicycles connected to subway stations[J]. Journal of Geo-Information Science, 2021, 23 (1): 155- 170
doi: 10.12082/dqxxkx.2021.200351
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|