| 交通工程、土木工程 |
|
|
|
|
| 空间异质性下共享单车出行量的非线性影响 |
路庆昌( ),袁康洁 |
| 长安大学 电子与控制工程学院,陕西 西安 710064 |
|
| Nonlinear effects of bike-sharing demands considering spatial heterogeneity |
Qingchang LU( ),Kangjie YUAN |
| School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China |
| 1 |
EREN E, UZ V E A review on bike-sharing: the factors affecting bike-sharing demand[J]. Sustainable Cities and Society, 2020, 54: 101882
doi: 10.1016/j.scs.2019.101882
|
| 2 |
CHEN Z, VAN LIEROP D, ETTEMA D Dockless bike-sharing systems: what are the implications?[J]. Transport Reviews, 2020, 40 (3): 333- 353
doi: 10.1080/01441647.2019.1710306
|
| 3 |
WANG X, LINDSEY G, SCHONER J E, et al Modeling bike share station activity: effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2016, 142: 04015001
doi: 10.1061/(ASCE)UP.1943-5444.0000273
|
| 4 |
ALCORN L G, JIAO J Bike-sharing station usage and the surrounding built environments in major Texas Cities[J]. Journal of Planning Education and Research, 2023, 43 (1): 122- 135
doi: 10.1177/0739456X19862854
|
| 5 |
WU C, KIM I, CHUNG H The effects of built environment spatial variation on bike-sharing usage: a case study of Suzhou, China[J]. Cities, 2021, 110: 103063
doi: 10.1016/j.cities.2020.103063
|
| 6 |
SUN Y, WANG Y, WU H How does the urban built environment affect dockless bikesharing-metro integration cycling? Analysis from a nonlinear comprehensive perspective[J]. Journal of Cleaner Production, 2024, 449: 141770
doi: 10.1016/j.jclepro.2024.141770
|
| 7 |
徐标, 路庆昌 共享单车停车需求的多尺度时空影响因素[J]. 浙江大学学报: 工学版, 2023, 57 (2): 380- 391 XU Biao, LU Qingchang Multi-scale spatiotemporal influencing factors of bike-sharing parking demand[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (2): 380- 391
|
| 8 |
YANG L, YU B, LIANG Y, et al Time-varying and non-linear associations between metro ridership and the built environment[J]. Tunnelling and Underground Space Technology, 2023, 132: 104931
doi: 10.1016/j.tust.2022.104931
|
| 9 |
DING C, CAO X, WANG Y Synergistic effects of the built environment and commuting programs on commute mode choice[J]. Transportation Research Part A: Policy and Practice, 2018, 118: 104- 118
doi: 10.1016/j.tra.2018.08.041
|
| 10 |
HATAMI F, RAHMAN M M, NIKPARVAR B, et al Non-linear associations between the urban built environment and commuting modal split: a random forest approach and SHAP evaluation[J]. IEEE Access, 2023, 11: 12649- 12662
doi: 10.1109/ACCESS.2023.3241627
|
| 11 |
WANG S, GAO K, ZHANG L, et al Geographically weighted machine learning for modeling spatial heterogeneity in traffic crash frequency and determinants in US[J]. Accident Analysis and Prevention, 2024, 199: 107528
doi: 10.1016/j.aap.2024.107528
|
| 12 |
LV H, LI H, CHEN Y, et al An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning[J]. Journal of Transport Geography, 2023, 113: 103716
doi: 10.1016/j.jtrangeo.2023.103716
|
| 13 |
WANG Y, ZHAN Z, MI Y, et al Nonlinear effects of factors on dockless bike-sharing usage considering grid-based spatiotemporal heterogeneity[J]. Transportation Research Part D: Transport and Environment, 2022, 104: 103194
doi: 10.1016/j.trd.2022.103194
|
| 14 |
ZHOU T, FENG T, KEMPERMAN A Assessing the effects of the built environment and microclimate on cycling volume[J]. Transportation Research Part D: Transport and Environment, 2023, 124: 103936
doi: 10.1016/j.trd.2023.103936
|
| 15 |
ZHU B, HU S, KAPARIAS I, et al Revealing the driving factors and mobility patterns of bike-sharing commuting demands for integrated public transport systems[J]. Sustainable Cities and Society, 2024, 104: 105323
doi: 10.1016/j.scs.2024.105323
|
| 16 |
深圳市人大常委会. 深圳经济特区互联网租赁自行车管理若干规定[EB/OL]. (2021−07−06) [2024−12−20]. https://www.szrd.gov.cn/v2/zx/szfg/content/post_966176.html.
|
| 17 |
WU J, TA N, SONG Y, et al Urban form breeds neighborhood vibrancy: a case study using a GPS-based activity survey in suburban Beijing[J]. Cities, 2018, 74: 100- 108
doi: 10.1016/j.cities.2017.11.008
|
| 18 |
仝德, 高静, 龚咏喜 城中村对深圳市职住空间融合的影响: 基于手机信令数据的研究[J]. 北京大学学报: 自然科学版, 2020, 56 (6): 1091- 1101 TONG De, GAO Jing, GONG Yongxi Impact of urban village on job-housing balance in Shenzhen: a study using mobile phone signaling data[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56 (6): 1091- 1101
|
| 19 |
LI M, TU W, TONG H, et al Quantifying the nighttime economy–housing separation from a human activity standpoint: a case study in Shenzhen, China[J]. Cities, 2024, 148: 104894
doi: 10.1016/j.cities.2024.104894
|
| 20 |
朱岑远, 郑乐, 张毅萌 基于MGWR的共享单车空间异质性分析[J]. 物流科技, 2024, 47 (24): 72- 77 ZHU Cenyuan, ZHENG Yue, ZHANG Yimeng Spatial heterogeneity analysis of bikesharing based on MGWR[J]. Logistics Sci-Tech, 2024, 47 (24): 72- 77
|
| 21 |
YAO Y, LIU X, LI X, et al Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata[J]. International Journal of Geographical Information Science, 2017, 31 (12): 2452- 2479
doi: 10.1080/13658816.2017.1360494
|
| 22 |
GUO Y, YANG L, CHEN Y Bike share usage and the built environment: a review[J]. Frontiers in Public Health, 2022, 10: 848169
doi: 10.3389/fpubh.2022.848169
|
| 23 |
孙艺玲, 仝德, 曹超 城市建成环境对公共自行车使用的影响机制研究: 以深圳市南山区为例[J]. 北京大学学报: 自然科学版, 2018, 54 (6): 1325- 1331 SUN Yiling, TONG De, CAO Chao How urban built environment affects the use of public bicycles: a case study of Nanshan District of Shenzhen[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54 (6): 1325- 1331
|
| 24 |
关昊天, 戢晓峰, 李武, 等 建成环境对共享单车与地铁组合出行的影响关系[J]. 交通运输系统工程与信息, 2024, 24 (4): 200- 211 GUAN Haotian, JI Xiaofeng, LI Wu, et al Influence of built environment on integrated use of bike sharing and metro[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (4): 200- 211
|
| 25 |
EWING R, CERVERO R Travel and the built environment: a synthesis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1780 (1): 87- 114
doi: 10.3141/1780-10
|
| 26 |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785−794.
|
| 27 |
XIAO L, LO S, LIU J, et al Nonlinear and synergistic effects of TOD on urban vibrancy: applying local explanations for gradient boosting decision tree[J]. Sustainable Cities and Society, 2021, 72: 103063
doi: 10.1016/j.scs.2021.103063
|
| 28 |
YANG W, LI Y, LIU Y, et al Environmental factors for outdoor jogging in Beijing: insights from using explainable spatial machine learning and massive trajectory data[J]. Landscape and Urban Planning, 2024, 243: 104969
doi: 10.1016/j.landurbplan.2023.104969
|
| 29 |
成骋, 陈文栋, 马洪生, 等 基于Leiden算法的共享单车活动社区识别方法: 南京案例分析[J]. 交通信息与安全, 2023, 41 (2): 103- 111,156 CHENG Cheng, CHEN Wendong, MA Hongsheng, et al A method for identifying operation zones of free-floating shared bikes based on leiden algorithm: a case study of the city of Nanjing[J]. Journal of Transport Information and Safety, 2023, 41 (2): 103- 111,156
|
| 30 |
WANG J, WANG Z, WANG Z, et al Exploring the effect of neighbouring built and demographic environment on station-level bike-sharing trips under COVID-19[J]. Journal of Transport and Health, 2024, 36: 101818
|
| 31 |
BI H, LI A, HUA M, et al Examining the varying influences of built environment on bike-sharing commuting: empirical evidence from Shanghai[J]. Transport Policy, 2022, 129: 51- 65
doi: 10.1016/j.tranpol.2022.10.004
|
| 32 |
严亚磊, 于涛, 沈丽珍 共享单车出行的建成环境影响机制: 以上海市为例[J]. 上海城市规划, 2020, (6): 85- 91 YAN Yalei, YU Tao, SHEN Lizhen The impact mechanism of built environment on shared bikes travel: a case study of Shanghai[J]. Shanghai Urban Planning Review, 2020, (6): 85- 91
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|