| 计算机技术 |
|
|
|
|
| 基于异常特征对抗学习的工业图像异常检测方法 |
王天飞1( ),周文俊1,*( ),项圣2,贺宇航1,彭博1 |
1. 西南石油大学 计算机与软件学院,四川 成都 610500 2. 浙江工业大学 信息工程学院,浙江 杭州 310023 |
|
| Industrial image anomaly detection method based on adversarial learning of abnormal features |
Tianfei WANG1( ),Wenjun ZHOU1,*( ),Sheng XIANG2,Yuhang HE1,Bo PENG1 |
1. School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China 2. School of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
王天飞,周文俊,项圣,贺宇航,彭博. 基于异常特征对抗学习的工业图像异常检测方法[J]. 浙江大学学报(工学版), 2025, 59(12): 2566-2575.
Tianfei WANG,Wenjun ZHOU,Sheng XIANG,Yuhang HE,Bo PENG. Industrial image anomaly detection method based on adversarial learning of abnormal features. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2566-2575.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2566
|
| 1 |
吕承侃, 沈飞, 张正涛, 等 图像异常检测研究现状综述[J]. 自动化学报, 2022, 48 (6): 1402- 1428 LV Chengkan, SHEN Fei, ZHANG Zhengtao, et al Review of image anomaly detection[J]. Acta Automatica Sinica, 2022, 48 (6): 1402- 1428
|
| 2 |
LIU J, XIE G, WANG J, et al Deep industrial image anomaly detection: a survey[J]. Machine Intelligence Research, 2024, 21 (1): 104- 135
doi: 10.1007/s11633-023-1459-z
|
| 3 |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3992–4003.
|
| 4 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261–2269.
|
| 5 |
SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874–1883.
|
| 6 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9584–9592.
|
| 7 |
ZHOU W, WANG T, HE Y, et al Contrast U-Net driven by sufficient texture extraction for carotid plaque detection[J]. Mathematical Biosciences and Engineering, 2023, 20 (9): 15623- 15640
doi: 10.3934/mbe.2023697
|
| 8 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
| 9 |
HE Y, XIANG S, ZHOU W, et al. A novel contrast operator for robust object searching [C]// 17th International Conference on Computational Intelligence and Security. Chengdu: IEEE, 2021: 309–313.
|
| 10 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.
|
| 11 |
BERMAN M, TRIKI A R, BLASCHKO M B. The lovasz-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4413–4421.
|
| 12 |
DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization [C]// International conference on pattern recognition. Cham: Springer International Publishing, 2021: 475–489.
|
| 13 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4182−4191.
|
| 14 |
BERGMANN P, LOWS S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders.
|
| 15 |
ZAVRTANIK V, KRISTAN M, SKOČAJ D Reconstruction by inpainting for visual anomaly detection[J]. Pattern Recognition, 2021, 112: 107706
doi: 10.1016/j.patcog.2020.107706
|
| 16 |
LI C L, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9659-9669.
|
| 17 |
张玥, 陈锡伟, 陈梦丹, 等 基于对比学习生成对抗网络的无监督工业品表面异常检测[J]. 电子测量与仪器学报, 2023, 37 (10): 193- 201 ZHANG Yue, CHEN Xiwei, CHEN Mengdan, et al Unsupervised surface anomaly detection of industrial products based on contrastive learning generative adversarial network[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37 (10): 193- 201
|
| 18 |
WAN Q, GAO L, LI X, et al Unsupervised image anomaly detection and segmentation based on pretrained feature mapping[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (3): 2330- 2339
doi: 10.1109/TII.2022.3182385
|
| 19 |
孔森林, 张辉, 黄镇南, 等 面向工业图像异常检测的非对称师生网络模型[J]. 计算机科学, 2024, 51 (Suppl.2): 331- 337 KONG Senlin, ZHANG Hui, HUANG Zhennan, et al Asymmetric teacher-student network model for industrial image anomaly detection[J]. Computer Science, 2024, 51 (Suppl.2): 331- 337
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|