Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2014-2022    DOI: 10.3785/j.issn.1008-973X.2025.10.002
机械工程     
新能源汽车IGBT功率模块热管理的数值模拟
高紫涵1,3(),程豫洲2,王学合4,罗坤1,2,*(),樊建人1,2
1. 浙江大学 能源高效清洁利用全国重点实验室,浙江 杭州 310027
2. 浙江大学 上海高等研究院,上海 201203
3. 全省新能源车辆热管理重点实验室,浙江 龙泉 323700
4. 上海芯华睿半导体科技有限公司,上海 201203
Numerical simulation of thermal management of IGBT power modules in new energy vehicles
Zihan GAO1,3(),Yuzhou CHENG2,Xuehe WANG4,Kun LUO1,2,*(),Jianren FAN1,2
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
3. Provincial Key Laboratory of New Energy Vehicles Thermal Management, Longquan 323700, China
4. Shanghai SemiHua Semiconductor Technology Limited Company, Shanghai 201203, China
 全文: PDF(2558 KB)   HTML
摘要:

为了提升新能源汽车功率模块的散热能力,采用流热固耦合数值模拟方法分析绝缘栅双极型晶体管(IGBT)功率模块的热管理系统,并提出包含贡献量化、代理建模与整体优化的三阶段设计优化方法. 基于ANSYS Fluent软件建立IGBT功率模块的数值模型,数值模拟值与实验值的相对误差为3.7%. 对影响IGBT功率模块散热性能的主要因素(包括基板陶瓷材料、冷却液流量和针肋结构)进行分析,确定对流换热热阻和陶瓷层热阻是影响芯片热阻的主要因素. 通过代理模型构建与多目标优化对750 V/820 A H-Boost IGBT功率模块进行设计优化,优化后的功率模块芯片热阻降低了21.1%,压降减少了39.3%,模块质量减轻了6.1%.

关键词: 绝缘栅双极晶体管(IGBT)热管理流热固耦合数值模拟设计优化    
Abstract:

To improve the cooling performance of power modules in new energy vehicles, a fluid–thermal–solid coupling numerical method was used to analyze the thermal management of an insulated gate bipolar transistor (IGBT) power module. A three-stage design optimization method, including contribution quantification, surrogate modeling, and overall optimization, was proposed. A numerical model of the IGBT power module was established in ANSYS Fluent, and the resulting relative error between the simulation and the experimental data was 3.7%. The effects of substrate ceramic material, coolant flow rate, and Pin-Fin geometry on thermal performance were analyzed, showing that convective thermal resistance and ceramic layer resistance are the main factors affecting chip thermal resistance. Based on surrogate modeling and multi-objective optimization, the design of a 750 V/820 A H-Boost IGBT power module was optimized. The optimized design reduced chip thermal resistance by 21.1%, pressure drop by 39.3%, and module mass by 6.1%.

Key words: insulated gate bipolar transistor (IGBT)    thermal management    thermo-fluid-solid coupling    numerical simulation    design optimization
收稿日期: 2024-12-27 出版日期: 2025-10-27
CLC:  TM 46  
基金资助: 国家自然科学基金资助项目(52236002).
通讯作者: 罗坤     E-mail: 22327103@zju.edu.cn;zjulk@zju.edu.cn
作者简介: 高紫涵(2001—),女,硕士生,从事功率半导体热管理研究. orcid.org/0009-0006-0291-3403. E-mail:22327103@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
高紫涵
程豫洲
王学合
罗坤
樊建人

引用本文:

高紫涵,程豫洲,王学合,罗坤,樊建人. 新能源汽车IGBT功率模块热管理的数值模拟[J]. 浙江大学学报(工学版), 2025, 59(10): 2014-2022.

Zihan GAO,Yuzhou CHENG,Xuehe WANG,Kun LUO,Jianren FAN. Numerical simulation of thermal management of IGBT power modules in new energy vehicles. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2014-2022.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.002        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2014

图 1  H-Boost IGBT模块的结构示意图
图 2  IGBT功率模块的简化模型
材料ρm/(kg·m?3)cp/(J·kg?1·℃?1)λ/(W·m?1·℃?1)μm/(mPa·s)
2 320713105.00
锡银7 40023433.00
8 930385398.00
氧化铝陶瓷3 95076527.00
锡银铜7 25022755.00
乙二醇溶液1 0423 4390.411.07
表 1  IGBT功率模块的材料物性参数
图 3  IGBT功率模块的网格无关性验证
图 4  IGBT功率模块的网格分布示意图
图 5  IGBT功率模块的芯片表面温度分布
芯片Rjc/(℃·W?1)ε/%
模拟测试
IGBT0.1090.1143.69
二极管0.1570.1495.24
表 2  IGBT功率模块芯片的热阻测试结果
图 6  不同陶瓷基板的芯片热阻
图 7  不同材料的陶瓷基板温度分布
图 8  不同材料的陶瓷基板温度梯度分布
图 9  冷却液压降和芯片热阻随冷却液体积流量的变化
图 10  不同冷却液体积流量下的冷却液截面温度分布
图 11  针肋结构示意图
图 12  不同圆形针肋直径下的冷却液压降与芯片热阻
图 13  不同横向节距下的冷却液压降与芯片热阻
图 14  不同椭圆针肋长轴下的冷却液压降与芯片热阻
结构φ/%
热阻质量
芯片1.200.13
芯片焊料层6.970.33
上铜层2.043.53
陶瓷层27.301.89
下铜层1.204.28
基板焊料层9.842.17
Pin-Fin散热器20.4087.66
冷却液30.20
表 3  IGBT功率模块原始结构热阻与质量占比分析
材料Rjc/(℃·W?1)mce/g
Al2O30.10910.647
Si3N40.0877.278
AlN0.0818.787
BeO0.0798.113
表 4  陶瓷材料性能参数对比
图 15  不同目标参数模型预测结果与数值模拟计算结果的对比
场景Rjc/(℃·W?1)Δp/kPa
IGBT二极管
优化0.1010.1436.934
模拟0.1070.1547.020
表 5  针肋结构优化参数的对比
模块基板材料Pin-Fin
截面形状尺寸/mm横向节距/mm
原始Al2O3圆形2.34.2
优化Si3N4椭圆形短轴:1.2, 长轴:2.43.2
表 6  IGBT功率模块优化前后的参数对比
模块Rjc/(℃·W?1)Δp/kPam/g
IGBT二极管
原始 0.109 0.157 11.56561.95
优化0.0860.1227.02527.85
表 7  IGBT功率模块优化前后的性能对比
1 TU C C, HUNG C L, HONG K B, et al Industry perspective on power electronics for electric vehicles[J]. Nature Reviews Electrical Engineering, 2024, 1 (7): 435- 452
doi: 10.1038/s44287-024-00055-4
2 KUANG K, GUO X, ZHOU Z, et al Mission profile-based hotspot temperature and lifespan estimation of DC-link capacitors used in automotive traction inverters[J]. IEEE Transactions on Device and Materials Reliability, 2025, 25 (1): 134- 143
doi: 10.1109/TDMR.2024.3523341
3 ASIM M, BAIG T, SIDDIQUI F R, et al Advancements in thermal management solutions for electric vehicle high-power electronics: innovations, cooling methods, and future perspectives[J]. Journal of Energy Storage, 2025, 111: 115344
doi: 10.1016/j.est.2025.115344
4 YANG S, BRYANT A, MAWBY P, et al An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47 (3): 1441- 1451
doi: 10.1109/TIA.2011.2124436
5 MA H, GOU M, TIAN X, et al Reliability simulation of IGBT module with different solders based on the finite element method[J]. Metals, 2024, 14 (10): 1141
doi: 10.3390/met14101141
6 ELAKKIYA R, KAVITHAA G, SAMAVATIAN V, et al Reliability enhancement of a power semiconductor with optimized solder layer thickness[J]. IEEE Transactions on Power Electronics, 2020, 35 (6): 6397- 6404
doi: 10.1109/TPEL.2019.2951815
7 CHEN C, SUETAKE A, HUO F, et al Development of SiC power module structure by micron-sized Ag-paste sinter joining on both die and heatsink to low-thermal-resistance and superior power cycling reliability[J]. IEEE Transactions on Power Electronics, 2024, 39 (9): 10638- 10650
doi: 10.1109/TPEL.2024.3408798
8 KIM S H, HEU C S, MOK J Y, et al Enhanced thermal performance of phase change material-integrated fin-type heat sinks for high power electronics cooling[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122257
doi: 10.1016/j.ijheatmasstransfer.2021.122257
9 LEE S, SON S H, KIM J, et al Heat conduction and thermal expansion of copper–graphite composite as a heat sink[J]. International Journal of Energy Research, 2022, 46 (8): 10907- 10918
doi: 10.1002/er.7891
10 付师, 杨增朝, 李江涛 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38 (10): 1117- 1132
FU Shi, YANG Zengchao, LI Jiangtao Progress of high strength and high thermal conductivity Si3N4 ceramics for power module packaging[J]. Journal of Inorganic Materials, 2023, 38 (10): 1117- 1132
doi: 10.15541/jim20230037
11 郑瑞剑, 魏鑫, 张浩, 等 电子封装用高导热AlN陶瓷基板研究进展[J]. 中国陶瓷, 2023, 59 (5): 1- 14
ZHENG Ruijian, WEI Xin, ZHANG Hao, et al Research progress on the high-thermal-conductivity AlN ceramic substrates for electronic packaging[J]. China Ceramics, 2023, 59 (5): 1- 14
12 HLINA J, REBOUN J, JANDA M Investigation of cooling capability of ceramic substrates for power electronics applications[J]. Applied Thermal Engineering, 2024, 247: 123110
doi: 10.1016/j.applthermaleng.2024.123110
13 KIM D, YAMAMOTO Y, NAGAO S, et al Measurement of heat dissipation and thermal-stability of power modules on DBC substrates with various ceramics by SiC micro-heater chip system and Ag sinter joining[J]. Micromachines, 2019, 10 (11): 745
doi: 10.3390/mi10110745
14 REHMAN T U, WOO P Progress in insulated gate bipolar transistor thermal management: from fundamentals to advanced strategies[J]. Renewable and Sustainable Energy Reviews, 2025, 210: 115219
doi: 10.1016/j.rser.2024.115219
15 CHEN H, ZHANG T, GAO Q, et al Thermal management enhancement of electronic chips based on novel technologies[J]. Energy, 2025, 316: 134575
doi: 10.1016/j.energy.2025.134575
16 ALAM M W, BHATTACHARYYA S, SOUAYEH B, et al CPU heat sink cooling by triangular shape micro-pin-fin: numerical study[J]. International Communications in Heat and Mass Transfer, 2020, 112: 104455
doi: 10.1016/j.icheatmasstransfer.2019.104455
17 SHEN Y T, PAN Y H, CHEN H, et al Experimental study of embedded manifold staggered pin-fin microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2024, 226: 125488
doi: 10.1016/j.ijheatmasstransfer.2024.125488
18 LEE Y J, KIM S J Experimental investigation on thermal-hydraulic performance of manifold microchannel with pin-fins for ultra-high heat flux cooling[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125336
doi: 10.1016/j.ijheatmasstransfer.2024.125336
19 ZOHORA F T, AKTER F, HAQUE M A, et al A novel pin finned structure-embedded microchannel heat sink: CFD-data driven MLP, MLR, and XGBR machine learning models for thermal and fluid flow prediction[J]. Energy, 2024, 307: 132646
doi: 10.1016/j.energy.2024.132646
20 ALI N, SRIVASTAVA S, HAQUE I, et al Heat dissipation and fluid flow in micro-channel heat sink equipped with semi-elliptical pin-fin structures: a numerical study[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107492
doi: 10.1016/j.icheatmasstransfer.2024.107492
21 KWON J, HAN C, LEE S, et al Thermal and energy performance characteristics of spiral-wing pin-fin heatsinks for liquid cooling of electronic devices in electric vehicles[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107705
doi: 10.1016/j.icheatmasstransfer.2024.107705
22 WANG G, WANG Z, LAI L, et al Experimental and numerical investigation of hydrothermal performance of a microchannel heat sink with pin fins[J]. Case Studies in Thermal Engineering, 2024, 60: 104631
doi: 10.1016/j.csite.2024.104631
23 MOHIT M K, GUPTA R Influence of fin length and width on flow and heat transfer performance of miniature heat sinks[J]. Case Studies in Thermal Engineering, 2024, 54: 104057
doi: 10.1016/j.csite.2024.104057
24 LI C, ZHENG Y, HUANG H, et al Numerical study on hydrothermal performance in a microchannel with gradient array of ribs and pin fins[J]. International Journal of Thermal Sciences, 2025, 210: 109562
doi: 10.1016/j.ijthermalsci.2024.109562
25 PANG M, LIU J, LIU W, et al Thermal-and-energy-conservation optimization of the cooling plate for IGBT by field synergy and entropy generation[J]. International Journal of Heat and Fluid Flow, 2024, 108: 109453
doi: 10.1016/j.ijheatfluidflow.2024.109453
26 CHEN C, LIU Y, LI J, et al Flow and heat transfer characteristics of manifold microchannels with different microchannel arrangements[J]. Thermal Science and Engineering Progress, 2025, 59: 103354
doi: 10.1016/j.tsep.2025.103354
27 YAN Y, WU J, XU F, et al Experimental investigation on flow and heat transfer characteristics of the drop-pressure microchannel heat sink with gradient distribution pin fin arrays and narrow slots[J]. Applied Thermal Engineering, 2023, 233: 121084
doi: 10.1016/j.applthermaleng.2023.121084
28 张嘉伟, 曾正, 孙鹏, 等 基于响应面的车用功率模块Pin-Fin优化设计[J]. 电工技术学报, 2022, 37 (22): 5836- 5850
ZHANG Jiawei, ZENG Zheng, SUN Peng, et al Optimized Pin-Fin design of power module for electric vehicle application by response surface[J]. Transactions of China Electrotechnical Society, 2022, 37 (22): 5836- 5850
29 CHEN X, XU X, LI M, et al Multi-objective topology optimization design of silicon carbide metal oxide semiconductor field effect transistors power module liquid-cooled heatsink for electric vehicles[J]. Applied Thermal Engineering, 2024, 254: 123861
doi: 10.1016/j.applthermaleng.2024.123861
30 NARASIPURAM R P, MOPIDEVI S Assessment of E-mode GaN technology, practical power loss, and efficiency modelling of iL2C resonant DC-DC converter for xEV charging applications[J]. Journal of Energy Storage, 2024, 91: 112008
doi: 10.1016/j.est.2024.112008
31 ANSYS INC. Fluent theory guide: 2024R2 [EB/OL]. [2024–12–20]. https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/prod_page.html?pn=Fluent&pid=Fluent&prodver=24.2&lang=en.
32 田野, 卜凯阳, 李楚杉, 等 用于IGBT模块温度观测的3-D降阶混合型热模型[J]. 电工技术学报, 2024, 39 (16): 5104- 5120
TIAN Ye, BU Kaiyang, LI Chushan, et al A hybrid 3-D reduced-order thermal model for temperature observation of IGBT modules[J]. Transactions of China Electrotechnical Society, 2024, 39 (16): 5104- 5120
33 ZHANG H, LI J, DAI J, et al Improved reliability of planar power interconnect with ceramic-based structure[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6 (1): 175- 187
doi: 10.1109/JESTPE.2017.2758901
[1] 王卓然,孙志坚,俞自涛. 狭缝喷射微通道散热器的流动传热特性[J]. 浙江大学学报(工学版), 2025, 59(7): 1539-1546.
[2] 麻建飞,贾港帅,江波,陈征,凌小康,贺少辉. 含空洞-减薄病害的超大跨隧道服役安全研究[J]. 浙江大学学报(工学版), 2025, 59(4): 698-705.
[3] 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制[J]. 浙江大学学报(工学版), 2024, 58(7): 1427-1435.
[4] 刘俊城,谭勇,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报(工学版), 2023, 57(3): 530-541.
[5] 王意存,邵长孝,金台,邢江宽,罗坤,樊建人. 基于多门控混合专家网络的燃烧热化学流形表征[J]. 浙江大学学报(工学版), 2023, 57(12): 2401-2411.
[6] 周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2476-2488.
[7] 季廷炜,查旭,谢芳芳,吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀. 基于高斯过程回归的空天飞行器多精度气动建模方法[J]. 浙江大学学报(工学版), 2023, 57(11): 2314-2324.
[8] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[9] 石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.
[10] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[11] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[12] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[13] 王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.
[14] 陈伟航,罗强,王腾飞,张文生,蒋良潍. DMC复合地基工后沉降可靠性分析及设计优化[J]. 浙江大学学报(工学版), 2022, 56(10): 2019-2027.
[15] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.