计算机与控制工程 |
|
|
|
|
融合多尺度和多头注意力的医疗图像分割方法 |
王万良1,2(),王铁军1,陈嘉诚1,尤文波1 |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 浙江树人大学 信息科技学院,浙江 杭州 310015 |
|
Medical image segmentation method combining multi-scale and multi-head attention |
Wan-liang WANG1,2(),Tie-jun WANG1,Jia-cheng CHEN1,Wen-bo YOU1 |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China |
引用本文:
王万良,王铁军,陈嘉诚,尤文波. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
Wan-liang WANG,Tie-jun WANG,Jia-cheng CHEN,Wen-bo YOU. Medical image segmentation method combining multi-scale and multi-head attention. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1796-1805.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.013
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1796
|
1 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
2 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.
|
3 |
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37 (9): 1904- 1916
|
4 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881-2890.
|
5 |
GU Z, CHENG J, FU H, et al CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38 (10): 2281- 2292
doi: 10.1109/TMI.2019.2903562
|
6 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 7794-7803.
|
7 |
XING X, YUAN Y, MENG M Q Zoom in lesions for better diagnosis: attention guided deformation network for WCE image classification[J]. IEEE Transactions on Medical Imaging, 2020, 39 (12): 4047- 4059
doi: 10.1109/TMI.2020.3010102
|
8 |
LIU R, LIU M, SHENG B, et al NHBS-Net: a feature fusion attention network for ultrasound neonatal hip bone segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40 (12): 3446- 3458
doi: 10.1109/TMI.2021.3087857
|
9 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848
|
10 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2021-08-01]. https://arxiv.org/abs/1706.05587.
|
11 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4, inception-ResNet and the impact of residual connections on learning [C]// Thirty-first AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 4278-4284.
|
12 |
ZHU X, HU H, LIN S, et al. Deformable convNets V2: more deformable, better results [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9308-9316.
|
13 |
WANG X, JIANG X, DING H, et al Bi-directional dermoscopic feature learning and multi-scale consistent decision fusion for skin lesion segmentation[J]. IEEE Transactions on Image Processing, 2019, 29: 3039- 3051
|
14 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
15 |
高颖琪, 郭松, 李宁, 等 语义融合眼底图像动静脉分类方法[J]. 中国图象图形学报, 2020, 25 (10): 2259- 2270 GAO Ying-qi, GUO Song, LI Ning, et al Arteriovenous classification method in fundus images based on semantic fusion[J]. Journal of Image and Graphics, 2020, 25 (10): 2259- 2270
doi: 10.11834/jig.200187
|
16 |
NI Z L, BIAN G B, ZHOU X H, et al. RAUNet: residual attention U-Net for semantic segmentation of cataract surgical instruments [C]// International Conference on Neural Information Processing. Shenzhen: Springer, 2019: 139-149.
|
17 |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2021-08-01]. https://arxiv.org/abs/1804.03999.
|
18 |
PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module [EB/OL]. [2021-08-01]. https://arxiv.org/abs/1807.06514.
|
19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
|
20 |
GU R, WANG G, SONG T, et al CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 40 (2): 699- 711
|
21 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. [2021-08-01]. https://arxiv.org/abs/2010.11929.
|
22 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10012-10022.
|
23 |
GUO J, HAN K, WU H, et al. CMT: convolutional neural networks meet vision transformers [EB/OL]. [2021-08-01].https://arxiv.org/abs/2107.06263.
|
24 |
CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure Transformer for medical image segmentation [EB/OL]. [2021-08-01]. https://arxiv.org/abs/2105.05537.
|
25 |
GAO Y, ZHOU M, METAXAS D. UTNet: a hybrid Transformer architecture for medical image segmentation [EB/OL]. [2021-08-01]. https://arxiv.org/abs/2107.00781.
|
26 |
CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) [C]// 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). Washington DC: IEEE, 2018: 168-172.
|
27 |
BERNAL J, SANCHEZ J, VILARINO F Towards automatic polyp detection with a polyp appearance model[J]. Pattern Recognition, 2012, 45 (9): 3166- 3182
doi: 10.1016/j.patcog.2012.03.002
|
28 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
29 |
WU H, PAN J, LI Z, et al Automated skin lesion segmentation via an adaptive dual attention module[J]. IEEE Transactions on Medical Imaging, 2020, 40 (1): 357- 370
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|