计算机技术 |
|
|
|
|
基于特征优化与深层次融合的目标检测算法 |
谢誉1( ),包梓群1,张娜1,*( ),吴彪2,涂小妹1,3,包晓安1 |
1. 浙江理工大学 计算机科学与技术学院,浙江 杭州 310018 2. 浙江理工大学 理学院,浙江 杭州 310018 3. 浙江广厦建设职业技术大学 建筑工程学院,浙江 东阳 322100 |
|
Object detection algorithm based on feature enhancement and deep fusion |
Yu XIE1( ),Zi-qun BAO1,Na ZHANG1,*( ),Biao WU2,Xiao-mei TU1,3,Xiao-an BAO1 |
1. School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China 3. School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 322100, China |
引用本文:
谢誉,包梓群,张娜,吴彪,涂小妹,包晓安. 基于特征优化与深层次融合的目标检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2403-2415.
Yu XIE,Zi-qun BAO,Na ZHANG,Biao WU,Xiao-mei TU,Xiao-an BAO. Object detection algorithm based on feature enhancement and deep fusion. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2403-2415.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.009
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2403
|
1 |
李雅倩, 盖成远, 肖存军, 等 基于细化多尺度深度特征的目标检测网络[J]. 电子学报, 2020, 48 (12): 2360- 2366 LI Ya-qian, GAI Cheng-yuan, XIAO Cun-jun, et al Object detection network based on refined multi-scale depth features[J]. Acta Electronica Sinica, 2020, 48 (12): 2360- 2366
doi: 10.3969/j.issn.0372-2112.2020.12.011
|
2 |
郑浦, 白宏阳, 李伟, 等 复杂背景下的小目标检测算法[J]. 浙江大学学报:工学版, 2020, 54 (9): 1777- 1784 ZHENG Pu, BAI Hong-yang, LI Wei, et al Small target detection algorithm in complex background[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (9): 1777- 1784
|
3 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// 2014 IEEE Conference on Computer Vison and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
4 |
GIRSHICK R. Fast R-CNN [C]// 2015 IEEE International Conference on Computer Vison. Santiago: IEEE, 2015: 1440-1448.
|
5 |
REN S, HE K GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
6 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// 2018 IEEE/CVF Conference on Computer Vison and Pattern Recognition. Salt Lake City: IEEE, 2018: 2603-2611.
|
7 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. [S. l. ]: Springer, 2016: 21-37.
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
|
9 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
10 |
REDMON J, FARHADI A. Yolov3: an incremental improvement. [EB/OL]. [2021-12-30]. https://arxiv.org/pdf/1804.02767.pdf.
|
11 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// 2017 IEEE Conference on Computer Vison and Pattern Recognition. Honolulu: IEEE, 2017: 963-944.
|
12 |
LI Z X, ZHOU F Q. FSSD: feature fusion single shot multibox detector [EB/OL]. [2021-12-30]. https://arxiv.org/pdf/1712. 00960.pdf.
|
13 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// 2017 IEEE International Conference on Computer Vison. Venice: IEEE, 2017: 2999-3007.
|
14 |
裴伟, 许晏铭, 朱永英, 等 改进的SSD航拍目标检测方法[J]. 软件学报, 2019, 30 (3): 738- 758 PEI Wei, XU Yan-ming, ZHU Yong-ying, et al The target detection method of aerial photography images with improved SSD[J]. Journal of Software, 2019, 30 (3): 738- 758
doi: 10.13328/j.cnki.jos.005695
|
15 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
|
16 |
GUO C, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12592-12601.
|
17 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression. [C]// AAAI Conference on Artificial Intelligence. NewYork: AAAI, 2020: 12993–13000.
|
18 |
SIMON Y K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2021-12-30]. https://arxiv.org/pdf/1409.1556.pdf.
|
19 |
陈科圻, 朱志亮, 邓小明, 等 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32 (4): 1201- 1227 CHEN Ke-qi, ZHU Zhi-liang, DENG Xiao-ming, et al Deep learning for multi-scale object detection: a survey[J]. Journal of Software, 2021, 32 (4): 1201- 1227
doi: 10.13328/j.cnki.jos.006166
|
20 |
WANG K, LIEW J H, ZOU Y, et al. PANet: few-shot image semantic segmentation with prototype alignment [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9197-9206.
|
21 |
GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7036-7045.
|
22 |
ZHANG Q, BAO X, WU B, et al Water meter pointer reading recognition method based on target-key point detection[J]. Flow Measurement and Instrumentation, 2021, 81: 102012
doi: 10.1016/j.flowmeasinst.2021.102012
|
23 |
HE J, SHEN L, ALBANIE S, et al Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023
doi: 10.1109/TPAMI.2019.2913372
|
24 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// European Conference on Computer Vision. [S. l.]: Springer, 2018: 3-19.
|
25 |
ZHANG H, ZU K, LU J, et al. EPSANet: an efficient pyramid split attention block on convolutional neural network. [EB/OL]. [2021-12-30]. https://arxiv.org/pdf/ 2105.14447.pdf.
|
26 |
LIU W, RABINOVICH A, BERG A C. ParseNet: looking wider to see better. [EB/OL]. [2021-12-30]. https://arxiv.org/pdf/1506.04579.pdf.
|
27 |
刘颖, 刘红燕, 范九伦, 等 基于深度学习的小目标检测研究与应用综述[J]. 电子学报, 2020, 48 (3): 590- 601 LIU Ying, LIU Hong-yan, FAN Jiu-lun, et al A Survey of research and application of small object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48 (3): 590- 601
doi: 10.3969/j.issn.0372-2112.2020.03.024
|
28 |
QIN Z, LI Z, ZHANG Z, et al. ThunderNet: towards real-time generic object detection on mobile devices [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6718-6727.
|
29 |
CAO Y, CHEN K, LOY C C, et al. Prime sample attention in object detection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11583-11591.
|
30 |
ZHOU P, NI B, GENG C, et al. Scale-transferrable object detection [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 528-537.
|
31 |
LI W, LIU G. A single-shot object detector with feature aggregation and enhancement [C]// 2019 IEEE International Conference on Image Processing. [S.l.]: IEEE, 2019: 3910-3914.
|
32 |
TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636.
|
33 |
ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9759-9768.
|
34 |
田秀霞, 李华强, 张琴, 等 基于双通道R-FCN的图像篡改检测模型[J]. 计算机学报, 2021, 44 (2): 370- 383 TIAN Xiu-xia, LI Hua-qiang, ZHANG Qin, et al Dual-channel R-FCN model for image forgery detection[J]. Chinese Journal of Computers, 2021, 44 (2): 370- 383
doi: 10.11897/SP.J.1016.2021.00370
|
35 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M, et al. YOLOv4: optimal speed and accuracy of object detection. [EB/OL]. [2021-12-30]. https://arxiv.org/pdf/2004.10934.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|