Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1419-1425    DOI: 10.3785/j.issn.1008-973X.2021.08.002
土木工程、交通工程     
城市地下综合管廊通风传热模型
何国青1(),赵文杰1,王亮2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 悉地(苏州)勘察设计顾问有限公司,江苏 苏州 215000
Ventilation and heat transfer modeling in urban utility tunnel
Guo-qing HE1(),Wen-jie ZHAO1,Liang WANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. CCDI (Suzhou) Exploration and Design Consultant Co. Ltd, Suzhou 215000, China
 全文: PDF(1519 KB)   HTML
摘要:

为了优化地下管廊的通风设计,降低运行费用,建立苏州某地下管廊(UUT)一典型段的通风传热的解析模型. 考虑舱间传热、空气和廊壁的耦合传热以及土壤边界厚度的影响. 通过与计算流体动力学(CFD)模型的比较,验证解析模型的可靠性. 结果表明,廊内热源、通风换热和向土壤传热是影响舱内温度的主要因素,舱间传热的影响相对较小. 考虑降温需求的各舱室最低通风量受热源强度、进风温度(大气温度)和土壤温度影响较大,实际管廊最低通风量的计算须结合当地气象条件和管廊热源强度. 对于苏州地区地下综合管廊试验段,满负荷运行的电力舱和热力舱的最低通风换气次数分别为10、5次/h,而无热源的水信舱和燃气舱均可以按现行规范要求的最低换气次数设计通风量. 对于其他布置形式的管廊,可以采用类似的解析模型进行分析.

关键词: 城市综合管廊通风模型热源计算流体动力学(CFD)    
Abstract:

An analytical model for ventilation and heat transfer in one typical urban utility tunnel (UUT) section in Suzhou was developed in order to aid the design and optimization of the ventilation system of the UUT for reduction in ventilation energy. The model includes the heat transfer among neighboring cabins, the conjugate heat transfer at the tunnel walls, and the thickness of the overlaying soil layer. The analytical model was validated by comparing it with the computational fluid dynamics (CFD) model. Results show that the internal heat source, ventilation, and soil temperature are the most important factors on cabin temperature, with the inter-cabin heat transfer a minor factor. The minimum ventilation rate to prevent over-heating of cabins is strongly dependent on the heat source strength, the inlet temperature (atmospheric temperature), and the soil temperature. Therefore, the minimum ventilation rate of UUT in other areas should be calculated according to the local meteorological conditions and the actual heat source intensity of the tunnel. The minimum ventilation rates, in air change rate, of the fully loaded cable cabin and the steam pipe cabin were 10 h?1 and 5 h?1, respectively, in the test section of UUT in Suzhou area. The minimum ventilation rate specified in the current code for UUT can meet the temperature control requirement for cabins without any heat sources. A similar analytical modelling approach can be used to analyze the ventilation requirement for UUT with other layouts of cabins.

Key words: urban utility tunnel    ventilation    model    heat source    computational fluid dynamics (CFD)
收稿日期: 2020-10-22 出版日期: 2021-09-01
CLC:  TU 962  
基金资助: 国家自然科学基金资助项目(51678518)
作者简介: 何国青(1975—),男,副教授,博士,从事建筑环境和节能研究. orcid.org/0000-0002-7667-2335. E-mail: guoqinghe@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何国青
赵文杰
王亮

引用本文:

何国青,赵文杰,王亮. 城市地下综合管廊通风传热模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1419-1425.

Guo-qing HE,Wen-jie ZHAO,Liang WANG. Ventilation and heat transfer modeling in urban utility tunnel. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1419-1425.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.002        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1419

图 1  苏州某地下管廊一标准段的传热模型
图 2  蒸汽管道传热示意图
图 3  地下管廊的CFD模型以及网格示意图
图 4  水信舱温度、湿度监测数据
图 5  苏州某地下管廊段热量和温度计算结果
图 6  管廊通风下的出口截面和电力舱中心剖面温度分布图
模型 Qa/kW Qs/kW Qr/kW td/℃ tr/℃ ts/℃ tq/℃
解析模型 36.84 37.48 18.40 60.0 49.4 33.3 33.7
CFD模型 37.04 35.96 17.98 58.1 47.6 35.8 34.1
$\dfrac{\left|{\text{解析模型} }-{ {\rm{CFD} } }\right|}{\rm{CFD} } \times 100{{\text{%}}}$ ?1% 4% 2% 3% 4% ?7% ?1%
表 1  计算案例解析模型和CFD模型计算的热量和温度的比较
图 7  电力舱最低通风换气次数和电缆发热量的关系
图 8  电力舱最低通风量和进气温度、土壤温度的关系
图 9  非发热舱不通风和通风状态下舱内温度和换气次数的关系
1 FAN C, CHEN J, ZHOU Y, et al Effects of fire location on the capacity of smoke exhaust from natural ventilation shafts in urban tunnels[J]. Fire and Materials, 2018, 42 (8): 974- 984
doi: 10.1002/fam.2683
2 QIAO Y K, PENG F L, SABRI S, et al Low carbon effects of urban underground space[J]. Sustainable Cities and Society, 2019, 45: 451- 459
doi: 10.1016/j.scs.2018.12.015
3 YANG C, PENG F L Feasibility study on the geothermal utility tunnel system[J]. Sustainable Cities and Society, 2019, 46: 101445
doi: 10.1016/j.scs.2019.101445
4 耿永常, 邵龙 哈尔滨地下空间开发利用现状与对策分析[J]. 哈尔滨工业大学学报, 2007, 39 (10): 1631- 1634+1669
GENG Yong-chang, SHAO Long The current situation and strategy for development and utility of underground space in Harbin[J]. Journal of Harbin Institute of Technology, 2007, 39 (10): 1631- 1634+1669
doi: 10.3321/j.issn:0367-6234.2007.10.028
5 WU D, ZHANG Y, LI A, et al Indoor airborne fungal levels in selected comprehensive compartments of the urban utility tunnel in Nanjing, southeast China[J]. Sustainable Cities and Society, 2019, 51: 101723
doi: 10.1016/j.scs.2019.101723
6 CURIEL-ESPARZA J, CANTO-PERELLO J Indoor atmosphere hazard identification in person entry urban utility tunnels[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2005, 20 (5): 426- 434
7 HIIPAKKA D W, BUFFINGTON J R Resolution of sick building syndrome in a high-security facility[J]. Applied Occupational and Environmental Hygiene, 2000, 15 (8): 635- 643
doi: 10.1080/10473220050075644
8 HULIN M, MOULARAT S, KIRCHNER S, et al Positive associations between respiratory outcomes and fungal index in rural inhabitants of a representative sample of French dwellings[J]. International Journal of Hygiene and Environmental Health, 2013, 216 (2): 155- 162
doi: 10.1016/j.ijheh.2012.02.011
9 LIU Z, LI A, HU Z, et al Study on the potential relationships between indoor culturable fungi, particle load and children respiratory health in Xi’an, China[J]. Building and Environment, 2014, 80: 105- 114
doi: 10.1016/j.buildenv.2014.05.029
10 TSAO Y C, HWANG Y H Impact of a water-damaged indoor environment on kindergarten student absences due to upper respiratory infection[J]. Building and Environment, 2013, 64: 1- 6
11 沈鑫 城市综合管廊防结露问题探讨[J]. 现代建筑电气, 2018, 9 (5): 16- 19
SHEN Xin Discussion on problems of anti condensation in urban utility tunnel[J]. Modern Architecture Electric, 2018, 9 (5): 16- 19
12 刘胡州 城市综合管廊通风系统设计分析研究[J]. 建筑热能通风空调, 2017, 36 (5): 86- 88
LIU Hu-zhou Discussion and study of ventilation system design for urban utility tunnel[J]. Building Energy & Environment, 2017, 36 (5): 86- 88
doi: 10.3969/j.issn.1003-0344.2017.05.022
13 王恒栋, 薛伟辰. 综合管廊工程理论与实践[M]. 北京: 中国建筑工业出版社, 2013.
14 LI A, KOSONEN R, MELIKOV A, et al Ventilation and environmental control of underground spaces: a short review[J]. E3S Web Conference, 2019, 111: 01039
doi: 10.1051/e3sconf/201911101039
15 住房和城乡建设部. 城市综合管廊工程技术规范: GB 50838—2015 [S]. 北京: 中国计划出版社.
16 孙立, 余斌, 杨恒声 城市地下综合管廊通风设计探讨[J]. 暖通空调, 2018, 48 (8): 94- 96
SUN Li, YU Bin, YANG Heng-sheng Ventilation design of urban underground utility tunnel[J]. Heating Ventilating Air Conditioning, 2018, 48 (8): 94- 96
17 唐宏辉, 刘承东, 刘雪峰 某综合管廊通风系统实地测试及分析[J]. 广东土木与建筑, 2020, 27 (6): 69- 72
TANG Hong-hui, LIU Cheng-dong, LIU Xue-feng Field test and analysis of ventilation system of a utility tunnel[J]. Guangdong Architecture Civil Engineering, 2020, 27 (6): 69- 72
18 王雪梅, 谭羽非, 于克成, 等 综合管廊热力舱在机械通风模式下温度场的模拟分析[J]. 区域供热, 2018, 196 (5): 34- 41
WANG Xue-mei, TAN Yu-fei, YU Ke-cheng, et al Simulation analysis of temperature field for thermal compartment in the utility tunnel[J]. District Heating, 2018, 196 (5): 34- 41
19 闵绚, 张正维, 邹建明, 等 管线敷设与风机室布置对综合管廊通风阻力影响研究[J]. 隧道建设, 2019, 39 (9): 1423- 1430
MIN Xuan, ZHANG Zheng-wei, ZOU Jian-ming, et al Influence of conduit deployment and fan room location on ventilation flow resistance in a utility tunnel[J]. Tunnel Construction, 2019, 39 (9): 1423- 1430
20 周游, 周伟国 综合管廊电缆舱通风数值模拟研究[J]. 建筑热能通风空调, 2016, 35 (11): 29- 33+91
ZHOU You, ZHOU Wei-guo Study on numerical simulation of utility cable tunnel ventilation system[J]. Building Energy & Environment, 2016, 35 (11): 29- 33+91
doi: 10.3969/j.issn.1003-0344.2016.11.007
21 王振芹, 曹正第, 王娜 GIl管廊通风温度场研究[J]. 高压电器, 2020, 56 (7): 128- 132
WANG Zhen-qin, CAO Zheng-di, WANG Na Study on ventilation temperature field of Gil tunnel[J]. High Voltage Apparatus, 2020, 56 (7): 128- 132
22 白思卓, 樊越胜, 王欢, 等 综合管廊电缆舱室通风形式数值模拟研究[J]. 建筑热能通风空调, 2020, 39 (2): 32- 35+44
BAI Si-zhuo, FAN Yue-sheng, WANG Huan, et al Simulation study on ventilation form of utility tunnel cable cabin[J]. Building Energy & Environment, 2020, 39 (2): 32- 35+44
doi: 10.3969/j.issn.1003-0344.2020.02.008
23 刘承东, 黎庶, 唐宏辉, 等 城市地下综合管廊通风缩尺模型的相似性分析[J]. 地下空间与工程学报, 2019, 15 (6): 1609- 1619
LIU Cheng-dong, LI Shu, TANG Hong-hui, et al Similarity analysis on the ventilation reduced-scale model of urban underground utility tunnel[J]. Journal of Underground Space and Engineering, 2019, 15 (6): 1609- 1619
24 王昱, 李娜, 张春萌, 等 苏州城北路综合管廊通风系统设计[J]. 煤气与热力, 2016, 36 (11): 13- 17
WANG Yu, LI Na, ZHANG Chun-meng, et al Design of ventilation system for Chengbei Road utility tunnel in Suzhou city[J]. Gas & Heat, 2016, 36 (11): 13- 17
doi: 10.3969/j.issn.1000-4416.2016.11.003
25 唐志华 城市综合管廊通风系统设计[J]. 暖通空调, 2018, 48 (3): 45- 49
TANG Zhi-hua Ventilation system design of urban utility tunnel[J]. Heating Ventilating Air Conditioning, 2018, 48 (3): 45- 49
26 INCROPERA F P, DEWITT D P. Fundamentals of heat and mass transfer[M]. 4th ed. New York: John Wiley & Sons, 2006.
27 高增 综合管廊通风分区长度的研究[J]. 暖通空调, 2019, 49 (5): 57- 60
GAO Zeng Length of ventilation compartment of utility tunnel[J]. Heating Ventilating Air Conditioning, 2019, 49 (5): 57- 60
[1] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[2] 章超波,刘永政,李宏波,赵阳,张丽珠,王子豪. 基于加权残差聚类的建筑负荷预测区间估计[J]. 浙江大学学报(工学版), 2022, 56(5): 930-937.
[3] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[4] 陈绍祥,曹志刚,叶星池,蔡袁强,张琪. 考虑温度效应的路基粗粒填料亚塑性模型[J]. 浙江大学学报(工学版), 2022, 56(5): 938-946, 976.
[5] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[6] 孟嘉,李俊超,陈云敏. 固废应变硬化机理与超重力模拟适用性[J]. 浙江大学学报(工学版), 2022, 56(4): 664-673.
[7] 陶宇,章博睿,徐磊,田洪雷,张亚鹏,张清文. 覆雪准则参数改进的高速列车转向架覆雪模拟[J]. 浙江大学学报(工学版), 2022, 56(4): 674-682.
[8] 张科文,潘柏松. 考虑非线性模型不确定性的航天器自主交会控制[J]. 浙江大学学报(工学版), 2022, 56(4): 833-842.
[9] 沈国辉,李保珩,郭勇,赵峥,潘峰. 输电塔扭转响应和扭转等效风荷载的计算方法[J]. 浙江大学学报(工学版), 2022, 56(3): 579-589.
[10] 褚晶辉,史李栋,井佩光,吕卫. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.
[11] 王勇超,曹钰,杨玉辉,许端清. 基于知识迁移和双向异步序列的对话生成模型[J]. 浙江大学学报(工学版), 2022, 56(3): 520-530.
[12] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[13] 唐晓武,费敏亮,俞悦,梁家馨,孙国平. 雨季降水对浙江井头山深埋土遗址地下水位的影响[J]. 浙江大学学报(工学版), 2022, 56(3): 598-606, 612.
[14] 屠杭垚,王万良,陈嘉诚,李国庆,吴菲. 结合大气散射模型的生成对抗网络去雾算法[J]. 浙江大学学报(工学版), 2022, 56(2): 225-235.
[15] 刘英莉,吴瑞刚,么长慧,沈韬. 铝硅合金实体关系抽取数据集的构建方法[J]. 浙江大学学报(工学版), 2022, 56(2): 245-253.