土木工程、交通工程 |
|
|
|
|
基于局部线性嵌入和支持向量机回归的TBM施工参数预测 |
李建斌1( ),武颖莹2,*( ),李鹏宇2,郑霄峰2,徐剑安2,鞠翔宇2 |
1. 中铁高新工业股份有限公司,北京 100000 2. 中铁工程装备集团有限公司,河南 郑州 450016 |
|
TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression |
Jian-bin LI1( ),Ying-ying WU2,*( ),Peng-yu LI2,Xiao-feng ZHENG2,Jian-an XU2,Xiang-yu JU2 |
1. China Railway Hi-tech Industry Co. Ltd, Beijing 100000, China 2. China Railway Engineering Equipment Co. Ltd, Zhengzhou 450016, China |
引用本文:
李建斌,武颖莹,李鹏宇,郑霄峰,徐剑安,鞠翔宇. 基于局部线性嵌入和支持向量机回归的TBM施工参数预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1426-1435.
Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.003
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1426
|
1 |
张镜剑, 傅冰骏 隧道掘进机在我国应用的进展[J]. 岩石力学与工程学报, 2007, 26 (2): 226- 238 ZHANG Jing-jian, FU Bing-jun Advances in tunnel boring machine application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (2): 226- 238
doi: 10.3321/j.issn:1000-6915.2007.02.002
|
2 |
JAKOBSEN P D, LANGMAACK L, DAHL F, et al Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust[J]. Tunnelling and Underground Space Technology, 2013, 38: 398- 408
doi: 10.1016/j.tust.2013.07.021
|
3 |
VILLENEUVE M C Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, (4): 41- 52
|
4 |
OZDEMIR L. Development of theoretical equations for predicting tunnel boreability[D]. Colorado: Colorado School of Mines, 1977.
|
5 |
ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]// Proceedings of the Rapid Excavation and Tunneling Conference. Boston MA: RETC Conference proceedings, 1993: 793–809.
|
6 |
RICO M. Hard rock tunnel boring: performance predictions and cutter life assessments[D]. Trondheim: Norwegian University of Science and Technology, 2016.
|
7 |
YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
|
8 |
ADOKO A C, GOKCEOGLU C, YAGIZ S Bayesian prediction of TBM penetration rate in rock mass[J]. Engineering Geology, 2017, 226: 245- 256
doi: 10.1016/j.enggeo.2017.06.014
|
9 |
ARMAGHANI D J, MOHAMAD E T, NARAYANASAMY M S, et al Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology, 2017, 63: 29- 43
doi: 10.1016/j.tust.2016.12.009
|
10 |
SUN W, SHI M, ZHANG C, et al Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23- 34
doi: 10.1016/j.autcon.2018.03.030
|
11 |
罗华, 陈祖煜, 龚国芳, 等 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报: 工学版, 2018, 52 (8): 141- 149 LUO Hua, CHEN Zu-yu, GONG Guo-fang, et al Advance rate of TBM based on field boring data[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 141- 149
|
12 |
张娜, 李建斌, 荆留杰, 等 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1977- 1985 ZHANG Na, LI Jian-bin, JING Liu-jie, et al Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1977- 1985
doi: 10.3785/j.issn.1008-973X.2019.10.015
|
13 |
侯少康, 刘耀儒, 张 凯 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39 (8): 1648- 1657 HOU Shao-kang, LIU Yao-ru, ZHANF Kai Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (8): 1648- 1657
|
14 |
YOU S, MA H Manifold topological multi-resolution analysis method[J]. Pattern Recognition, 2011, 44 (8): 1629- 1648
doi: 10.1016/j.patcog.2010.12.023
|
15 |
ROWEIS S T, SAUL L K Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326
doi: 10.1126/science.290.5500.2323
|
16 |
HAMILTON W H, DOLLINGER G L Optimizing tunnel boring machine and cutter design for greater boreability[J]. RETC Proceedings, 1979, 1: 280- 296
|
17 |
SUNDIN N O, WÄNSTEDT S. A boreability model for TBM’s [C]// 1st North American Rock Mechanics Symposium. Austin: American Rock Mechanics Association, 1994.
|
18 |
NELSON P, THOMAS O R U D, FRED K H Factors affecting TBM penetration rates in sedimentary rocks proceedings[J]. Symposium on Rock Mechanics, 1983, 24: 227- 237
|
19 |
FUKUI K, OKUBO S Some attempts for estimating rock strength and rock mass classification from cutting force and investigation of optimum operation of tunnel boring machines[J]. Rock Mechanics and Rock Engineering, 2006, 39 (1): 25- 44
doi: 10.1007/s00603-005-0071-6
|
20 |
龚秋明, 佘祺锐, 侯哲生, 等 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29 (12): 2522- 2532 GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al Experimental study of TBM penetration in marble rock mass under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (12): 2522- 2532
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|