Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1426-1435    DOI: 10.3785/j.issn.1008-973X.2021.08.003
土木工程、交通工程     
基于局部线性嵌入和支持向量机回归的TBM施工参数预测
李建斌1(),武颖莹2,*(),李鹏宇2,郑霄峰2,徐剑安2,鞠翔宇2
1. 中铁高新工业股份有限公司,北京 100000
2. 中铁工程装备集团有限公司,河南 郑州 450016
TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression
Jian-bin LI1(),Ying-ying WU2,*(),Peng-yu LI2,Xiao-feng ZHENG2,Jian-an XU2,Xiang-yu JU2
1. China Railway Hi-tech Industry Co. Ltd, Beijing 100000, China
2. China Railway Engineering Equipment Co. Ltd, Zhengzhou 450016, China
 全文: PDF(1397 KB)   HTML
摘要:

依托吉林引松工程开展隧道掘进机(TBM)施工参数预测研究,提出TBM施工数据分段提取算法,提取上升段前30 s的总推进力、刀盘转速、推进速度、刀盘扭矩、刀盘转速电位器设定值、推进速度电位器设定值、贯入度、贯入度指数(FPI)、扭矩切深指数(TPI)9个参数作为输入;通过局部线性嵌入(LLE)完成对上升段数据特征的降维;基于支持向量机回归(SVR)建立TBM施工控制参数(推进速度、刀盘转速)和负载参数(总推进力、刀盘扭矩)预测模型. 分析是否结合前一掘进循环的FPI、TPI指数进行预测对预测效果的影响. 结果表明,上述方法在推进速度、刀盘转速、总推进力、刀盘扭矩的预测中均取得了较好的预测效果,平均预测绝对百分比误差均小于15%,验证了该预测方法的有效性,该方法可以为TBM现场施工提供指导.

关键词: 隧道掘进机(TBM)施工参数掘进性能预测局部线性嵌入(LLE)支持向量机回归(SVR)    
Abstract:

Tunnel?boring?machine (TBM) tunneling parameter prediction was conducted based on the Yinsong project in Jilin. A TBM tunneling data segmentation method was proposed to extract features from rising phase and stable phase. Thrust, cutter head speed, advance rate, torque, cutter head speed setting, advance rate setting, penetration rate, field penetration index (FPI) and torque penetration index (TPI) in the first 30 s of rising phase were extracted as the input of the prediction models. The locally linear embedding (LLE) was used to reduce the dimensions of the characteristic data of rising phase. A prediction model for TBM construction control parameters (propulsion speed, cutter head speed) and load parameters (total propulsion force, cutter head torque) was established based on the support vector regression (SVR). The impact on the prediction effect of whether to combine the FPI and TPI indexes of the previous tunneling cycle was analyzed and compared. Results show that favorable prediction effects for propulsion speed, cutter head speed, total propulsion force and cutter head torque were obtained based on the proposed model. The mean absolute percentage errors on the test set were all below 15%. The proposed method can provide guidance for TBM site operation due to the high prediction accuracy.

Key words: tunnel boring machine (TBM)    tunneling parameter    tunneling performance    prediction    locally linear embedding (LLE)    support vector regression (SVR)
收稿日期: 2020-06-22 出版日期: 2021-09-01
CLC:  U 45  
基金资助: 国家重点研发计划资助项目(2018YFB1702504)
通讯作者: 武颖莹     E-mail: lijianbin@crectbm.com;wyy2218@126.com
作者简介: 李建斌(1962一),男,教授级高级工程师,从事隧道掘进装备创新技术研究. orcid.org/0000-0002-0874-2362. E-mail: lijianbin@crectbm.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李建斌
武颖莹
李鹏宇
郑霄峰
徐剑安
鞠翔宇

引用本文:

李建斌,武颖莹,李鹏宇,郑霄峰,徐剑安,鞠翔宇. 基于局部线性嵌入和支持向量机回归的TBM施工参数预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1426-1435.

Jian-bin LI,Ying-ying WU,Peng-yu LI,Xiao-feng ZHENG,Jian-an XU,Xiang-yu JU. TBM tunneling parameters prediction based on Locally Linear Embedding and Support Vector Regression. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1426-1435.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.003        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1426

图 1  施工参数预测模型结构
图 2  TBM 3标段地理位置平面图
图 3  围岩强度与围岩等级分布图
参数 数值
开挖直径/mm 7 930
滚刀数量 17 inch 8 把,19 inch 48 把
刀盘总推力/kN 23260
刀盘驱动功率/kW 3500
刀盘扭矩/(kN·m) 8410
刀盘脱困扭矩/(kN·m) 12615
最大刀盘转速/(r·min?1) 7.6
表 1  TBM主要参数
图 4  TBM 3标段地质剖面图
图 5  TBM掘进循环划分说明
图 6  掘进循环分段算法流程图
图 7  总推进力、刀盘扭矩预测算法流程图
指标类别 参数 MAE RMSE R2 MAPE/%
含上一循环FPI、TPI F 793.60 1065.97 0.90 6.72
T 174.58 242.05 0.89 8.97
不含上一循环FPI、TPI F 880.44 1199.78 0.88 7.54
T 257.59 367.71 0.74 14.93
表 2  FPI、TPI对总推进力、刀盘扭矩预测效果影响
图 8  推进速度、刀盘转速预测算法流程图
指标类别 参数 MAE RMSE R2 MAPE/%
含上一循环FPI、TPI v 6.52 9.49 0.50 13.08
n 0.24 0.38 0.82 4.03
不含上一循环FPI、TPI v 7.87 11.18 0.30 16.04
n 0.32 0.47 0.72 5.46
表 3  FPI、TPI对推进速度、刀盘转速预测效果的影响
图 9  总推进力、刀盘扭矩预测结果
图 10  推进速度、刀盘转速预测结果
图 11  某一TBM掘进循环每分钟推进速度和刀盘转速
图 12  某一TBM掘进循环每分钟总推进力预测结果
图 13  某一TBM掘进循环每分钟刀盘扭矩预测结果
预测参数 数据集 MAE MAPE% R2 RMSE
总推进力 训练集 698.01 5.76 0.91 970.19
测试集 810.65 6.63 0.89 1086.04
刀盘扭矩 训练集 149.65 7.14 0.90 214.17
测试集 161.26 7.53 0.89 223.99
推进速度 训练集 5.81 11.29 0.62 8.35
测试集 6.71 13.43 0.52 9.46
刀盘转速 训练集 0.21 3.65 0.84 0.36
测试集 0.24 4.04 0.81 0.39
表 4  施工参数预测模型预测效果
1 张镜剑, 傅冰骏 隧道掘进机在我国应用的进展[J]. 岩石力学与工程学报, 2007, 26 (2): 226- 238
ZHANG Jing-jian, FU Bing-jun Advances in tunnel boring machine application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (2): 226- 238
doi: 10.3321/j.issn:1000-6915.2007.02.002
2 JAKOBSEN P D, LANGMAACK L, DAHL F, et al Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust[J]. Tunnelling and Underground Space Technology, 2013, 38: 398- 408
doi: 10.1016/j.tust.2013.07.021
3 VILLENEUVE M C Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, (4): 41- 52
4 OZDEMIR L. Development of theoretical equations for predicting tunnel boreability[D]. Colorado: Colorado School of Mines, 1977.
5 ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]// Proceedings of the Rapid Excavation and Tunneling Conference. Boston MA: RETC Conference proceedings, 1993: 793–809.
6 RICO M. Hard rock tunnel boring: performance predictions and cutter life assessments[D]. Trondheim: Norwegian University of Science and Technology, 2016.
7 YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
8 ADOKO A C, GOKCEOGLU C, YAGIZ S Bayesian prediction of TBM penetration rate in rock mass[J]. Engineering Geology, 2017, 226: 245- 256
doi: 10.1016/j.enggeo.2017.06.014
9 ARMAGHANI D J, MOHAMAD E T, NARAYANASAMY M S, et al Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition[J]. Tunnelling and Underground Space Technology, 2017, 63: 29- 43
doi: 10.1016/j.tust.2016.12.009
10 SUN W, SHI M, ZHANG C, et al Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23- 34
doi: 10.1016/j.autcon.2018.03.030
11 罗华, 陈祖煜, 龚国芳, 等 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报: 工学版, 2018, 52 (8): 141- 149
LUO Hua, CHEN Zu-yu, GONG Guo-fang, et al Advance rate of TBM based on field boring data[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 141- 149
12 张娜, 李建斌, 荆留杰, 等 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报: 工学版, 2019, 53 (10): 1977- 1985
ZHANG Na, LI Jian-bin, JING Liu-jie, et al Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1977- 1985
doi: 10.3785/j.issn.1008-973X.2019.10.015
13 侯少康, 刘耀儒, 张 凯 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报, 2020, 39 (8): 1648- 1657
HOU Shao-kang, LIU Yao-ru, ZHANF Kai Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (8): 1648- 1657
14 YOU S, MA H Manifold topological multi-resolution analysis method[J]. Pattern Recognition, 2011, 44 (8): 1629- 1648
doi: 10.1016/j.patcog.2010.12.023
15 ROWEIS S T, SAUL L K Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326
doi: 10.1126/science.290.5500.2323
16 HAMILTON W H, DOLLINGER G L Optimizing tunnel boring machine and cutter design for greater boreability[J]. RETC Proceedings, 1979, 1: 280- 296
17 SUNDIN N O, WÄNSTEDT S. A boreability model for TBM’s [C]// 1st North American Rock Mechanics Symposium. Austin: American Rock Mechanics Association, 1994.
18 NELSON P, THOMAS O R U D, FRED K H Factors affecting TBM penetration rates in sedimentary rocks proceedings[J]. Symposium on Rock Mechanics, 1983, 24: 227- 237
19 FUKUI K, OKUBO S Some attempts for estimating rock strength and rock mass classification from cutting force and investigation of optimum operation of tunnel boring machines[J]. Rock Mechanics and Rock Engineering, 2006, 39 (1): 25- 44
doi: 10.1007/s00603-005-0071-6
20 龚秋明, 佘祺锐, 侯哲生, 等 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29 (12): 2522- 2532
GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al Experimental study of TBM penetration in marble rock mass under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (12): 2522- 2532
[1] 章超波,刘永政,李宏波,赵阳,张丽珠,王子豪. 基于加权残差聚类的建筑负荷预测区间估计[J]. 浙江大学学报(工学版), 2022, 56(5): 930-937.
[2] 李文娟,邓洪高,马谋,蒋俊正. 基于图信号处理的传染病传播预测方法[J]. 浙江大学学报(工学版), 2022, 56(5): 1017-1024.
[3] 陈成,张皞,李永强,冯远静. 关系生成图注意力网络的知识图谱链接预测[J]. 浙江大学学报(工学版), 2022, 56(5): 1025-1034.
[4] 陈伟航,罗强,王腾飞,蒋良潍,张良. 基于Bi-LSTM的非等时距路基工后沉降滚动预测[J]. 浙江大学学报(工学版), 2022, 56(4): 683-691.
[5] 杨锡运,刘雅欣,马文兵,邢国通,高峰. 考虑风电不确定性的风电场参与调频市场投标策略[J]. 浙江大学学报(工学版), 2022, 56(4): 736-744.
[6] 李博群,杨家强. 用于SPMSM的自适应增量式无差拍预测电流控制算法[J]. 浙江大学学报(工学版), 2022, 56(3): 607-612.
[7] 何飞,金苍宏,吴明晖. 基于意图识别的不确定性行为序列预测方法[J]. 浙江大学学报(工学版), 2022, 56(2): 254-262.
[8] 杨亚锋,汪怡平,陈志鑫,苏建军,杨斌. 大巴车飞沫扩散特性及乘客感染风险预测[J]. 浙江大学学报(工学版), 2022, 56(1): 161-167.
[9] 黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.
[10] 黄炜,陈田,吴入军. 基于门控循环单元与误差修正的短期负荷预测[J]. 浙江大学学报(工学版), 2021, 55(9): 1625-1633.
[11] 庞维庆,何宁,罗燕华,郁晞. 基于数据融合的ABC-SVM社区疾病预测方法[J]. 浙江大学学报(工学版), 2021, 55(7): 1253-1260.
[12] 颉芳弟,翟强,顾伟红. 基于动态贝叶斯网络的TBM卡机风险预测[J]. 浙江大学学报(工学版), 2021, 55(7): 1339-1350.
[13] 林浩,李雷孝,王慧,马志强,万剑雄. 基于相关向量机和模糊综合评价的路况预测模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1072-1082.
[14] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[15] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.