Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (1): 161-167    DOI: 10.3785/j.issn.1008-973X.2022.01.018
能源工程、机械工程     
大巴车飞沫扩散特性及乘客感染风险预测
杨亚锋1(),汪怡平1,*(),陈志鑫1,苏建军2,杨斌3
1. 武汉理工大学 现代汽车零部件技术湖北省重点实验室, 湖北 武汉430070
2. 湖北省齐星汽车车身股份有限公司, 湖北 随州 441300
3. 甘肃建投重工科技有限公司, 甘肃 兰州 730000
Dispersion characteristics of droplet in bus and risk prediction of infection
Ya-feng YANG1(),Yi-ping WANG1,*(),Zhi-xin CHEN1,Jian-jun SU2,Bin YANG3
1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
2. Hubei Qixing Cabin Manufacturing Limited Company, Suizhou 441300, China
3. Gansu Construction Investment Heavy Industry Technology Limited Company, Lanzhou 730000, China
 全文: PDF(1149 KB)   HTML
摘要:

为了研究飞沫在大巴车中的扩散特性并揭示病毒的传播规律,以空调开启状态下的大巴车为研究对象,通过对车内流场结构的分析,应用拉格朗日方法对位于车内前部、中部、后部的患者咳嗽产生飞沫的扩散过程进行计算,获取飞沫的传播路径、浓度分布、逃逸速率等扩散特性参数. 根据飞沫中病毒颗粒数量,结合Wells-Riley方程对车内乘客的感染概率进行预测. 研究结果表明,飞沫在舱内的分布特性与患者位置、回风口位置、气流组织等因素密切相关;与位于后部患者相比,前部患者会使更多的乘客面临较高的感染风险;位于飞沫扩散路径且距离患者三排以内的乘客感染概率均高于30%.

关键词: 大巴车飞沫感染风险预测计算流体动力学(CFD)Wells-Riley方程    
Abstract:

The bus with air-condition was chosen as research object in order to analyze the dispersion of droplet in bus and reveal the mechanism of virus transmission. The dispersion characteristic parameters of droplet such as dispersion path, concentration distribution and escape rate were obtained by the analysis of flow field. The calculation of transport of the droplets exhaled from a single cough by patient in the front, middle and back of the cabin with the Lagrangian method. Then the infection risk for passenger can be evaluated by the Wells-Riley equation according to the amount of inhaled virus particles by passenger. Results show that location of the patient and air return opening, the airflow pattern can significantly affect the droplet distribution. The patient in the front may cause more passengers at a higher infection risk compared with the patient in the back. The infection probability of passengers located in the droplet dispersion pathway and within three rows of the patient is higher than 30%.

Key words: bus    droplet    risk prediction of infection    computational fluid dynamics (CFD)    Wells-Riley equation
收稿日期: 2021-03-15 出版日期: 2022-01-05
CLC:  TB 71  
基金资助: 国家自然科学基金资助项目(51775395);国家重点研发计划资助项目(2018YFB0105301)
通讯作者: 汪怡平     E-mail: yyfyfq@whut.edu.cn;wangyiping@whut.edu.cn
作者简介: 杨亚锋(1993—),男,博士生,从事飞沫气溶胶扩散的研究. orcid.org/0000-0002-4881-7744. E-mail: yyfyfq@whut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨亚锋
汪怡平
陈志鑫
苏建军
杨斌

引用本文:

杨亚锋,汪怡平,陈志鑫,苏建军,杨斌. 大巴车飞沫扩散特性及乘客感染风险预测[J]. 浙江大学学报(工学版), 2022, 56(1): 161-167.

Ya-feng YANG,Yi-ping WANG,Zhi-xin CHEN,Jian-jun SU,Bin YANG. Dispersion characteristics of droplet in bus and risk prediction of infection. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 161-167.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.018        https://www.zjujournals.com/eng/CN/Y2022/V56/I1/161

图 1  大巴车座椅布局
图 2  大巴车送风口布置
图 3  乘客呼吸区域
边界条件 设置值
送风口 送风速度为3 m/s,温度20 ℃,垂直送风口.
湍流强度为2.5%,湍流尺度为0.005 m.
回风口 压力出口,0 Pa.
人体表面 人体热流密度为20 W/m2
天花板、地板、车身 热交换系数为3 W/(m2·K)
玻璃 热交换系数为5 W/(m2·K)
其余壁面 绝热
表 1  边界条件设置
设置项 设定值
湍流模型 RNGk-ε
壁面函数 标准壁面函数
空间离散格式 二阶迎风格式
计算方法 SIMPLE算法
表 2  求解器设置
X方向截面 面平均流速/(m·s?1
330万 710万 1800万
1.5 m 0.190 0.187 0.192
4.5 m 0.179 0.185 0.176
8.5 m 0.223 0.220 0.212
表 3  网格无关性验证
图 4  稳态流场速度分布图
图 5  案例1随时间变化的飞沫分布
图 6  案例2随时间变化的飞沫分布
图 7  案例3随时间变化的飞沫分布
图 8  飞沫逃逸率图
图 9  3个案例中的乘客感染概率
1 World Health Organization, 2020a. Disease outbreaks [EB/OL]. (2020-02-05). https://www.who.int/emergencies/diseases/en/.
2 World Health Organization, 2020b. Novel coronavirus (2019-nCoV) situation reports [EB/OL]. (2020-02-05). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-report/.
3 MORAWSKA L Droplet fate in indoor environments, or can we prevent the spread of infection?[J]. Indoor Air, 2010, 16 (5): 335- 347
4 ANNIE B, SACHA S A, CHARLES R B, et al The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review[J]. Journal of Travel Medicine, 2016, 23 (1): 1- 7
doi: 10.1093/jtm/tav014
5 NASIR Z A, CAMPOS L C, CHRISTIE N, et al Airborne biological hazards and urban transport infrastructure: current challenges and future directions[J]. Environmental Science and Pollution Research International, 2016, 23 (15): 15757- 15766
doi: 10.1007/s11356-016-7064-8
6 BINNS P L, SHEPPEARD V, STAFF M P Isolation and quarantine during pandemic (H1N1) 2009 influenza in NSW: the operational experience of public health units[J]. New South Wales Public Health Bulletin, 2010, 21 (2): 10- 15
doi: 10.1071/NB09036
7 SHEN Y, LI C, DONG H, et al Community outbreak investigation of SARS-CoV-2 transmission among bus riders in Eastern China[J]. JAMA Internal Medicine, 2020, 180 (12): 1665- 1671
doi: 10.1001/jamainternmed.2020.5225
8 ZHU S, SREBRIC J, SPENGLER J D, et al An advanced numerical model for the assessment of airborne transmission of influenza in bus microenvironments[J]. Building and Environment, 2012, 47 (1): 67- 75
9 YANG X, OU C, YANG H, et al Transmission of pathogen-laden expiratory droplets in a coach bus[J]. Journal of Hazardous Materials, 2020, 397: 122609
doi: 10.1016/j.jhazmat.2020.122609
10 ZHANG Z, HAN T, YOO K H, et al Disease transmission through expiratory aerosols on an urban bus[J]. Physics of Fluids, 2021, 33: 015116
doi: 10.1063/5.0037452
11 XIE X, LI Y, SUN H, et al Exhaled droplets due to talking and coughing[J]. Journal of the Royal Society Interface, 2009, 6 (Supple.6): S703- S714
12 LI F, LIU J, PEI J, et al Experimental study of gaseous and particulate contaminants distribution in an aircraft cabin[J]. Atmospheric Environment, 2014, 85: 223- 233
doi: 10.1016/j.atmosenv.2013.11.049
13 WANG F, YAT H Y, WEN B N, et al Improvement of the indoor environment and airborne contamination control in an operating room[J]. Advanced Materials Research, 2011, 255-260: 1532- 1536
doi: 10.4028/www.scientific.net/AMR.255-260.1532
14 CHEN Q Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer Fundamentals, 1995, 28 (3): 353- 369
doi: 10.1080/10407799508928838
15 CHEN Q Prediction of room air motion by Reynolds-stress models[J]. Building and Environment, 1996, 31 (3): 233- 244
doi: 10.1016/0360-1323(95)00049-6
16 CHEN Q, XU W A zero-equation turbulence model for indoor airflow simulation[J]. Energy and Buildings, 1998, 28 (2): 137- 144
doi: 10.1016/S0378-7788(98)00020-6
17 ZHANG Z, CHEN Q Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces[J]. Atmospheric Environment, 2007, 41 (25): 5236- 5248
doi: 10.1016/j.atmosenv.2006.05.086
18 WELLS W F. Airborne contagion and air hygiene: an ecological study of droplet infection [M]. Cambridge: Harvard University Press, 1955.
19 RILEY E C, MURPHY G, RILEY R L Airborne spread of measles in a suburban elementary school[J]. American Journal of Epidemiology, 1978, 107 (5): 421- 432
doi: 10.1093/oxfordjournals.aje.a112560
20 ZHU S, KATO S, YANG J Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment[J]. Building and Environment, 2006, 41 (12): 1691- 1702
doi: 10.1016/j.buildenv.2005.06.024
21 GUPTA J K, LIN C H, CHEN Q Flow dynamics and characterization of a cough[J]. Indoor Air, 2009, 19 (6): 517- 525
doi: 10.1111/j.1600-0668.2009.00619.x
[1] 黄松兴,焦甲龙,陈超核. 方形波浪中船舶运动特性及安全航行策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1473-1481.
[2] 何国青,赵文杰,王亮. 城市地下综合管廊通风传热模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1419-1425.
[3] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[4] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[5] 柯世堂,余文林,徐璐,杜凌云,余玮,杨青. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.
[6] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[7] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[8] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[9] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[10] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[11] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.
[12] 孟庆龙, 王元. 基于CFD的空间场温度系统建模与控制[J]. J4, 2012, 46(8): 1478-1484.
[13] 李文春 胡桂林 刘永江 樊建人 岑可法. 熔融碳酸盐燃料电池的计算流体力学模拟[J]. J4, 2005, 39(10): 1638-1643.