浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 440-445    DOI: 10.3785/j.issn.1008-973X.2018.03.004
 土木与交通工程

Local loss and flow characteristic of dividing flow in bifurcated tunnel
ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, 310058
 全文: PDF(3120 KB)   HTML

Abstract:

A 1/20 scale model for ventilation of bifurcated tunnel was set up in accordance with the similarity criterion of Reynolds (resistance) and Euler (pressure). The three-dimensional CFD model of separation flow at tunnel bifurcation was constructed. By combining scale model tests and CFD simulation, the local loss and flow characteristic of dividing flow at tunnel bifurcation were analyzed. It is noted that, dividing flow local losses of main tunnel are principally incurred by velocity gradient changes and flow separation between fluids and the tunnel wall, while dividing flow local losses in ramp are further affected by mainstream flow turning. As for the dividing flow local loss coefficient of the main line, it almost suffers no impacts of the included angle. Whereas for dividing flow local loss coefficient in ramp, it goes up as the included angle increases when the flow diversion ratio is smaller than 0.5, and declines with the increase of the included angle when it is greater than 0.5. Furthermore, by modifying the Bassett's expressions based on the test data, an equation was established which can be used to precisely calculate dividing flow local loss coefficients for bifurcated tunnel with any included angle within the range from 5° to 15°. The research results can provide theoretical reference for the ventilation calculation of the bifurcated tunnel.

 CLC: U453.5

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 440-445.

#### 链接本文:

 [1] 高广运,何俊锋,李佳. 地铁运行引起的饱和地基动力响应[J]. 浙江大学学报:工学版,2010, 44(10):1925-1930. GAO Guang-yun, HE Jun-feng, LI Jia. Dynamic response induced by running subway in saturated ground[J]. Journal of Zhejiang University:Engineering Science,2010, 44(10):1925-1930. [2] 吴世明,王湛,王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. 浙江大学学报:工学版,2013, 47(4):595-601. WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. Journal of Zhejiang University:Engineering Science,2013, 47(4):595-601. [3] 阳东,赵成梅. 热压与风机动力共同作用下多分支隧道内排烟气流的多解性[J]. 土木建筑与环境工程,2015, 37(1):1-6. YANG Dong, ZHAO Cheng-mei. Multiple steady states of exhaust airflow in a multi-branch tunnel with the combined effects of buoyancy and fan power[J]. Journal of Civil,Architectural & Environmental Engineering,2015, 37(1):1-6. [4] 俞明健. 城市地下道路设计理论与实践[M]. 北京:中国建筑工业出版社,2014:25-35. [5] 陈玉远. 城市公路隧道多匝道通风系统计算方法的探讨[J]. 现代隧道技术,2011, 48(5):97-100. CHEN Yu-yuan. Discussion of calculation method for multiple-ramp ventilation systems in urban highway tunnels[J]. Modern Tunnelling Technology,2011, 48(5):97-100. [6] LI Q, CHEN C, DENG Y W, et al. Influence of traffic force on pollutant dispersion of CO,NO and particle matter (PM 2.5) measured in an urban tunnel in Changsha,China[J]. Tunnelling and Underground Space Technology,2015, 49:400-407. [7] IWANAMI S, SUU T, KATO H. Study on flow characteristics in right-angled pipe fittings:1st report on case of water flow[J].Transactions of the Japan Society of Mechanical Engineers,2008, 35(269):97-106. [8] 李玲,李玉梁,黄继汤,等. 三岔管内水流流动的数值模拟与实验研究[J]. 水利学报,2001, 3:49-52. LI Ling, LI Yu-liang, HUANG Ji-tang, et al. Numerical simulation and experimental study on water flow in Y-type tube[J]. Journal of Hydraulic Engineering,2001, 3:49-52. [9] MILLER D S. Internal flow:a guide to losses in pipe and duct systems[M]. Bedford:BHR Group Limited,1971:303-360. [10] IDELCHIK I E, STEINBERG M O, MALYAVSKAYA G R, et al.Handbook of hydraulic resistance, 4th Edition[M]. New York:Begell House Inc,2008:483-572. [11] BASSETT M D, WINTERBONE D E, PEARSON R J. Calculation of steady flow pressure loss coefficients for pipe junctions[J]. Proceedings of the institution of mechanical engineers,part C:Journal of Mechanical Engineering Science,2001, 215(8):861-881. [12] 王亚琼,谢永利,刘洪洲,等. 海底隧道半横向通风孔物理模型试验[J]. 中国公路学报,2010, 23(3):76-82. WANG Ya-qiong, XIE Yong-li, LIU Hong-zhou, et al. Physical model experiment on semi-transverse ventilation air inlet and outlet of subsea tunnel[J]. China Journal of Highway and Transport,2010, 23(3):76-82. [13] 孙恒超,陈国定,陈薄. 泛结构条件下轴承腔油气两相流动的模化方法[J]. 航空动力学报,2014, 29(8):1987-1995. SUN Heng-chao, CHEN Guo-ding, CHEN Bo. Modeling method of bearing chamber oil/air tow-phase flow under multi-geometrical conditions[J]. Journal of Aerospace Power,2014, 29(8):1987-1995. [14] JTG/T D70/2-02-2014.公路隧道通风设计细则[S]. 北京,中华人民共和国交通运输部,2014:37. [15] 归柯庭,汪军,王秋颖. 工程流体力学[M]. 北京:科学出版社,2007:183-185. [16] 石喜,吕宏兴,朱德兰,等. PVC三通管水流阻力与流动特征分析[J]. 农业机械学报,2013, 44(1):73-79. SHI Xi, LV Hong-xing, ZHU De-lan, et al. Flow resistance and characteristics of PVC tee pipes[J]. Transactions of the Chinese Society for Agricultural Machinery,2013, 44(1):73-79. [17] 朱红钧,林元华,谢龙汉. FLUENT流动分析及仿真实用教程[M]. 北京:人民邮电出版社,2010:107-110. [18] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-eeddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids,1995, 24(3):227-238. [19] 陈卫忠,郭小红,曹传林,等. 公路分岔隧道循环风相互影响及其对策研究[J]. 岩石力学与工程学报,2008, 27(6):1137-1147. CHEN Wei-zhong, GUO Xiao-hong, CAO Chuan-lin, et al. Research on interrelationship of exhaust air of highway forked tunnel and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering,2008, 27(6):1137-1147. [20] 王晓雯,蒋树屏. 公路长隧道纵向组合通风计算方法及应用[J]. 中国公路学报,1996, 9(3):62-71. WANG Xiao-wen, JIANG Shu-ping. Calculating method and application of longitudinally combined ventilation in a long highway tunnel project[J]. China Journal of Highway and Transport,1996, 9(3):62-71. [21] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 清华大学出版社,2004:125-126. [22] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics:the finite volume method[M]. Harlow Essex:Pearson Education Limited,2007:186-190. [23] 吕宏兴,裴国霞,杨玲霞. 水力学[M]. 北京:中国农业出版社,2002:55-66. [24] 蔡增基,龙天渝. 流体力学泵与风机[M]. 北京:中国建筑工业出版社,2009:91-128. [25] GAN G H, RIFFAT S B. Numerical determination of energy losses at duct junctions[J]. Applied Energy,2000, 67(3):331-340.
 No related articles found!