Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 446-452    DOI: 10.3785/j.issn.1008-973X.2018.03.005
土木与交通工程     
基于变权重系数的LQR车辆后轮主动转向控制研究
谢宪毅1, 金立生1, 高琳琳2, 夏海鹏1
1. 吉林大学 交通学院, 吉林 长春 130022;
2. 常熟理工学院 汽车工程学院, 江苏 常熟 215500
Study on rear wheel active steering control based on variable weight coefficient of LQR
XIE Xian-yi1, JIN Li-sheng1, GAO Lin-lin2, XIA Hai-peng1
1. School of Transportation, Jilin University, Changchun 130022, China;
2. College of Automobile Engineering, Changshu Institute of Technology, Changshu 215500, China
 全文: PDF(3075 KB)   HTML
摘要:

为提高4WS汽车LQR后轮主动转向控制器的性能与适用范围,分析不同路面附着条件下质心侧偏角、横摆角速度对汽车稳定性的影响,提出一种基于路面附着系数调整最优控制中半正定矩阵Q权重系数策略.利用模糊控制理论设计变权重系数调节器,实现最优控制参数的自适应调整.通过Matlab/Simulink软件进行闭环双移线仿真试验,结果表明,在不同附着路面上行驶时,所提出的变权重系数LQR后轮主动转向控制器能够改善车辆的稳定性与安全性,保证车辆按照驾驶员预期的理想轨迹行驶,顺利完成双移线试验;相比于LQR后轮主动转向控制器,与标准双移线轨迹之间的误差降低了28.25%.通过硬件在环试验验证了这一控制系统的可行性与实时性.

Abstract:

To improve the application and performance for rear active steering system of four wheel steering (4WS) vehicles with linear quadratic regulator (LQR), the effects on vehicles' stabilities which caused by side slip angle and yaw rate with different road-adhesion conditions were analyzed, and the adjustment strategy of optimum control positive semi-definite matrix Q weight coefficient based on the road adhesion coefficient was proposed. Variable weight coefficient regulator with fuzzy control theory and achieved adaptive adjustment for optimum control parameters were designed. The simulation which tested closed-loop double lane change through Matlab/Simulink reveals that the LQR rear active steering system could not only improve the stability and esecurity of vehicles but also ensure that vehicles follow the ideal trajectory for the driver's expectation. Results show that the double lane change simulation was completed successfully. Comparing to LQR rear wheel active steering controller, the error between ideal trajectory and actual path is reduced by 28.25%. The hardware in the loop test has verified the feasible and the real-time performance of this system.

收稿日期: 2017-08-06 出版日期: 2018-09-11
CLC:  U461.6  
基金资助:

国家自然科学基金资助项目(51575229);国家“973”重点基础研究发展规划资助项目(2016YFB0100900).

通讯作者: 金立生,男,教授.orcid.org/0000-0002-3086-1333.     E-mail: jinls@jlu.edu.cn
作者简介: 谢宪毅(1989-),男,博士生,从事汽车稳定性控制研究.orcid.org/0000-0002-9335-3459.E-mail:xiexianyi123@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

谢宪毅, 金立生, 高琳琳, 夏海鹏. 基于变权重系数的LQR车辆后轮主动转向控制研究[J]. 浙江大学学报(工学版), 2018, 52(3): 446-452.

XIE Xian-yi, JIN Li-sheng, GAO Lin-lin, XIA Hai-peng. Study on rear wheel active steering control based on variable weight coefficient of LQR. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 446-452.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.005        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/446

[1] CHATZIKOMIS C I, SPENTZAS K N. Comparison of a vehicle equipped with electronic stability control (ESC) to a vehicle with four wheel steering (4WS)[J]. Forschung im Ingenieurwesen, 2014, 78(1/2):13-25.
[2] MARINO R, SCALZI S. Asymptotic sideslip angle and yaw rate decoupling control in four-wheel steering vehicles[J]. Vehicle System Dynamics, 2010, 48(9):999-1019.
[3] LV H M, CHEN N, LI P. Multi-objective H∞ optimal control for four-wheel steering vehicle based on yaw rate tracking[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2004, 218(10):1117-1123.
[4] LI M X, JIA Y M, DU J P. LPV control with decoupling performance of 4WS vehicles under velocity-varying motion[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1708-1724.
[5] LIU W, HE H W, SUN F C, et al. Integrated chassis control for a three-axle electric bus with distributed driving motors and active rear steering system[J]. Vehicle System Dynamics, 2017, 55(5):601-625.
[6] LI B, RAKHEJA S, FENG Y. Enhancement of vehicle stability through integration of direct yaw moment and active rear steering[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2016, 230(6):830-840.
[7] RUSSELL H E B, GERDES J C. Design of variable vehicle handling characteristics using Four-Wheel Steer-by-Wire[J].IEEE Transactions on Control Systems Technology, 2016, 24(5):1529-1540.
[8] 董铸荣,张欣,胡松华.基于LQR变传动比控制的4WIS电动车转向控制仿真研究[J]. 汽车工程, 2017,39(1):79-85. DONG Zhu-rong, ZHANG Xin, HU Song-hua, et al. A simulation study on the steering control of a 4WIS EV based on LQR variable transmission ratio control[J]. Automotive Engineering, 2017, 39(1):79-85.
[9] 邱浩,雷正保,贺萍. 基于变传动比的后轮主动转向控制方法研究[J]. 机械设计,2015,32(1):90-94. QIU Hao, LEI Zheng-bao, HE Ping. Research on active steering control of rear wheels based on variable transmission ratio[J]. Journal of Machine Design, 2015,32(1):90-94.
[10] 金立生,高琳琳,谢宪毅. 四轮独立转向车辆稳定性的模糊最优控制方法[J]. 西南交通大学学报,2016,51(6):1064-1072. JIN Li-sheng, GAO Lin-lin, XIE Xian-yi. Fuzzy-optimal control of four-wheel independent steering vehicles[J]. Journal of Southwest Jiaotong University, 2016, 51(6):1064-1072.
[11] 刘启佳,陈思忠. 基于LQR的四轮转向汽车控制方法[J]. 北京理工大学学报,2014,34(11):1135-1139. LIU Qi-jia, CHEN Si-zhong. The control method about four wheels steering cars based on LQR theory[J].Transactions of Beijing Institute of Technology, 2014,34(11):1135-1139.
[12] 杜峰,魏朗,赵建有. 基于状态反馈的四轮转向汽车最优控制[J].长安大学学报:自然科学版,2008(4):91-94. DU Feng, WEI Lang, ZHAO Jian-you. Optimization control of four-wheel steering vehicle based on state feedback[J]. Journal of Chang' an University:Natural Science Edition, 2008(4):91-94.
[13] 王德平,郭孔辉. 车辆动力学稳定性控制的控制原理与控制策略研究[J]. 机械工程学报,2000(3):97-99. WANG De-ping, GUO Kong-hui. Research on the principle and tactics of vehicle dynamics stability control[J]. Journal of Mechanical Engineering, 2000(3):97-99.
[14] 丁海涛,郭孔辉,陈虹. 汽车稳定性控制中横摆力矩决策的LQR方法[J]. 吉林大学学报:工学版,2010,40(3):597-601. DING Hai-tao, GUO Kong-hui, CHEN Hong. LQR method for vehicle yaw moment decision in vehicle stability control[J].Journal of Jilin University:Engineering and Technology Edition, 2010, 40(3):597-601.
[15] 朱绍鹏,林鼎,谢博臻. 电动汽车驱动力分层控制策略[J]. 浙江大学学报:工学版, 2016,50(11):2094-2099. ZHU Shao-peng, LIN Ding, XIE Bo-zhen. Driving force hierarchical control strategy of electric vehicle[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(11):2094-2099.
[16] 白艳,贾鑫,宗长富. 汽车操纵稳定性客观评价方法综述[J]. 科学技术与工程,2012,12(6):1339-1347. BAI Yan,JIA Xin,ZONG Chang-fu. Review of objective vehicle handling evaluation[J]. Science Technology and Engineering, 2012, 12(6):1339-1347.
[17] 李刚,赵德阳,解瑞春. 基于改进的Sage-Husa自适应扩展卡尔曼滤波的车辆状态估计[J]. 汽车工程,2015,37(12):1426-1432. LI Gang, ZHAO De-yang, XIE Rui-chun. Vehicle state estimation based on improved Sage-Husa adaptive extended Kalman filtering[J]. Automotive Engineering, 2015, 37(12):1426-1432.
[18] 王志福,刘明春,周杨. 基于模糊扩展卡尔曼滤波的轮毂电机驱动车辆纵向速度估计算法[J]. 西南交通大学学报,2015,50(6):1094-1099. WANG Zhi-fu, LIU Ming-chun, ZHOU Yang.Estimation of longitudinal speed of in-wheel motor driven vehicle using fuzzy extended Kalman filter[J]. Journal of Southwest Jiaotong University, 2015, 50(6):1094-1099.
[19] 李刚,解瑞春,李宁. 基于卡尔曼滤波的车辆状态与路面附着估计[J]. 华南理工大学学报:自然科学版,2014,42(8):129-135. LI Gang, XIE Rui-chun, LI Ning.Estimation of vehicle state and road adhesion coefficient based on Kalman filter[J]. Journal of South China University of Technology:Natural Science Edition, 2014, 42(8):129-135.
[20] GUO K H, GUAN H. Modelling of driver/vehicle directional control system[J]. Vehicle System Dynamics, 1993, 22(3-4):141-184.
[21] 陈龙,李文瑶,徐兴. 基于在线ECMS的混合动力公交车能量管理策略优化与HIL仿真[J]. 汽车工程,2016,38(10):1163-1168. CHEN Long, LI Wen-yao, XU Xing. Optimization and HIL simulation of energy management strategy for hybrid electric bus based on online ECMS[J]. Automotive Engineering, 2016, 38(10):1163-1168.

No related articles found!