Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (1): 168-177    DOI: 10.3785/j.issn.1008-973X.2022.01.019
能源工程、机械工程     
仿肌肉绳索驱动下肢康复机器人系统使用安全性评价
王砚麟1,2(),王克义1,*(),王奎成1,莫宗骏1,王璐莹1
1. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
2. 兰州理工大学 机电工程学院, 甘肃 兰州 730050
Safety evaluation of bionic-muscle cable-driven lower limb rehabilitation robot system
Yan-lin WANG1,2(),Ke-yi WANG1,*(),Kui-cheng WANG1,Zong-jun MO1,Lu-ying WANG1
1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
2. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(1127 KB)   HTML
摘要:

为了研究仿生肌肉绳索驱动下肢康复机器人使用安全性的评价方法和指标,基于Hill肌肉模型,给出仿生肌肉绳索模型,介绍仿生肌肉绳索驱动下肢康复机器人(BM?CDLR). 在康复机器人的刚性运动支链的运动规划和力学分析的基础上,定义了安全性能因子. 考虑不同患者的运动承受能力和刚性运动支链滑块运动速度的波动性,提出康复机器人的使用安全性评价指标. 通过实例分析验证了使用安全性评价方法的合理性.

关键词: 仿生肌肉绳索下肢康复机器人运动规划安全性能因子使用安全性    
Abstract:

A bionic muscle cable model was given based on the Hill muscle model, and a bionic-muscle cable-driven lower limb rehabilitation robot (BM-CDLR) was introduced in order to analyze the safety evaluation method and index of BM-CDLR. The safety performance factors were defined based on the motion planning of the rigid motion branch and mechanical analysis of the BM-CDLR. The use safety evaluation index of the BM-CDLR was proposed by considering the motion tolerance of different patients and the volatility of the motion speed of the slider in the rigid motion branch chain. The rationality of the use safety evaluation method of the BM-CDLR was verified through case analysis.

Key words: bionic muscle cable    lower limb rehabilitation robot    motion planning    safety performance factor    use safety
收稿日期: 2021-03-05 出版日期: 2022-01-05
CLC:  TH 113  
基金资助: 国家自然科学基金资助项目(52175006); 黑龙江省自然科学基金资助项目(LH2019E032); 中央高校基本科研业务费专项资金资助项目(3072020CF0706)
通讯作者: 王克义     E-mail: wangyanlin0513@21cn.com;wangkeyi@hrbeu.edu.cn
作者简介: 王砚麟(1992—),男,博士生,从事机器人技术的研究. orcid.org/ 0000-0002-2975-0361. E-mail: wangyanlin0513@21cn.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王砚麟
王克义
王奎成
莫宗骏
王璐莹

引用本文:

王砚麟,王克义,王奎成,莫宗骏,王璐莹. 仿肌肉绳索驱动下肢康复机器人系统使用安全性评价[J]. 浙江大学学报(工学版), 2022, 56(1): 168-177.

Yan-lin WANG,Ke-yi WANG,Kui-cheng WANG,Zong-jun MO,Lu-ying WANG. Safety evaluation of bionic-muscle cable-driven lower limb rehabilitation robot system. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 168-177.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.019        https://www.zjujournals.com/eng/CN/Y2022/V56/I1/168

图 1  仿生肌肉绳索驱动下肢康复机器人
工况 参数
ke1/( N·m?1) Le1/m ke2/( N·m?1) Le2/m ke3/(N·m?1) Le3/m
A 100 0.50 100 0.8 100 0.8
B 200 0.50 100 0.8 100 0.8
C 100 0.65 100 0.8 100 0.8
D 100 0.50 200 0.8 100 0.8
E 100 0.50 100 0.6 100 0.8
F 100 0.50 200 0.6 200 0.6
表 1  不同工况下仿生肌肉绳索中弹性元件的参数
图 2  牵引点运动轨迹和滑块B1的运动轨迹
图 3  第1种规划中安全性能因子和使用安全性指标的变化曲线
图 3-1  
图 4  第2种规划中安全性能因子和使用安全性指标的变化曲线
1 United Nations. 2019 revision of world population prospects [R]. New York: Department of Economic and Social Affairs, United Nations, 2019.
2 WANG Y L, WANG K Y, ZHAO W Y, et al Effects of single crouch walking gaits on fatigue damages of lower extremity main muscles[J]. Journal of Mechanics in Medicine and Biology, 2019, 19 (6): 1940046
3 DE-LA-TORRE R, OÑA E D, BALAGUER C, et al Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review[J]. Sensors, 2020, 20 (18): 5251
doi: 10.3390/s20185251
4 BASTERIS A, NIJENHUIS S M, STIENEN A H A Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review[J]. Journal of Neuroengineering and Rehabilitation, 2014, 11: 111- 126
doi: 10.1186/1743-0003-11-111
5 WANG Y L, WANG K Y, ZHANG Z X, et al Design, comprehensive evaluation, and experimental study of a cable-driven parallel robot for lower limb rehabilitation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42 (7): 371
doi: 10.1007/s40430-020-02443-x
6 WANG Y L, WANG K Y, WANG W L, et al Appraise and analysis of dynamical stability of cable-driven lower limb rehabilitation training robot[J]. Journal of Mechanical Science and Technology, 2019, 33 (11): 5461- 5472
doi: 10.1007/s12206-019-1040-4
7 CUI X, CHEN W H, JIN X, et al Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (1): 161- 172
doi: 10.1109/TMECH.2016.2618888
8 ALIMAN N, RAMLI R, HARIS S M Design and development of lower limb exoskeleton: a survey[J]. Robotics and Autonomous Systems, 2017, 95: 102- 116
doi: 10.1016/j.robot.2017.05.013
9 AMIRI M S, RAMLI R, TARMIZI M A A, et al Simulation and control of a six degree of freedom lower limb exoskeleton[J]. Journal Kejuruteraan, 2020, 32 (2): 197- 204
10 ARMANNSDOTTIR A L, BECKERLE P, MORENO J C, et al Assessing the involvement of users during development of lower limb wearable robotic exoskeletons: a survey study[J]. Human Factors, 2020, 62 (3): 351- 364
doi: 10.1177/0018720819883500
11 KINO H, YOSHITAKE T, WADA R, et al 3-DOF planar parallel-wire driven robot with an active balancer and its model-based adaptive control[J]. Advanced Robotics, 2018, 32 (14): 766- 777
doi: 10.1080/01691864.2018.1493397
12 QIAN S, ZI B, WANG W, et al A review on cable-driven parallel robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31 (1): 66- 77
doi: 10.1186/s10033-018-0267-9
13 ZOU Y P, WANG N, WANG X Q, et al Design and experimental research of movable cable-driven lower limb rehabilitation robot[J]. IEEE Access, 2019, 7: 2315- 2326
doi: 10.1109/ACCESS.2018.2887233
14 ZOU Y. P, LIU K, WANG N, et al. Design and optimization of movable cable-driven lower-limb rehabilitation robot [C]// 3rd International Conference on Advanced Robotics and Mechatronics. Singapore: IEEE, 2018: 714-719.
15 ZI B, YIN G C, LI Y, et al. Kinematic performance analysis of a hybrid-driven waist rehabilitation robot [C]// 2nd International Conference on Mechatronics and Robotics Engineering. Nice: Springer, 2016.
16 SCALERA L, GALLINA P, SERIANI S, et al Cable-based robotic crane (CBRC): design and implementation of overhead traveling cranes based on variable radius drums[J]. IEEE Transactions on Robotics, 2018, 34 (2): 474- 485
doi: 10.1109/TRO.2018.2791593
17 SERIANI S, GALLINA P Variable radius drum mechanisms[J]. Journal of Mechanisms and Robotics-Transactions of the ASME, 2016, 8 (2): 021016
doi: 10.1115/1.4031951
18 WANG Y L, WANG K Y, ZHANG Z X, et al Analysis of dynamical stability of rigid-flexible hybrid-driven lower limb rehabilitation robot[J]. Journal of Mechanical Science and Technology, 2020, 34 (4): 1735- 1748
doi: 10.1007/s12206-020-0335-9
19 WANG K Y, YIN P C, YANG H P, et al. The man-machine motion planning of rigid-flexible hybrid lower limb rehabilitation robot [J]. Advances in Mechanical Engineering, 2018, 10(6): 1687814018775865.
20 WANG Y L, WANG K Y, ZHANG Z X, et al Appraisement and analysis of dynamical stability of under-constrained cable-driven lower limb rehabilitation training robot[J]. Robotica, 2020, 39 (6): 1023- 1036
21 王砚麟, 赵志刚, 苏程, 等 欠约束多机协调吊运系统工作空间和运动稳定性分析[J]. 振动与冲击, 2017, 36 (16): 44- 50
WANG Yan-lin, ZHAO Zhi-gang, SU Cheng, et al Analysis of the workspace and dynamic stability of a multi-robot collaboratively towing system[J]. Journal of Vibration and Shock, 2017, 36 (16): 44- 50
22 赵志刚, 王砚麟, 李劲松 多机器人协调吊运系统力位姿混合运动稳定性评价方法[J]. 哈尔滨工程大学学报, 2018, 39 (1): 148- 155
ZHAO Zhi-gang, WANG Yan-lin, LI Jin-song Appraise of dynamical stability of multi-robots cooperatively lifting system based on hybrid force-position-pose approach[J]. Journal of Harbin Engineering University, 2018, 39 (1): 148- 155
23 ZHAO T, ZI B, QIAN S, et al Algebraic method-based point-to-point trajectory planning of an under-constrained cable-suspended parallel robot with variable angle and height cable mast[J]. Chinese Journal of Mechanical Engineering, 2020, 33 (1): 54
doi: 10.1186/s10033-020-00473-z
24 韦慧玲, 仇原鹰, 盛英 高速绳牵引摄像机器人的运动稳定控制[J]. 西安电子科技大学学报, 2016, 43 (5): 63- 69
WEI Hui-ling, QIU Yuan-ying, SHENG Ying Motion stable control for cable-driven parallel camera robots with high speeds[J]. Journal of Xidian University, 2016, 43 (5): 63- 69
doi: 10.3969/j.issn.1001-2400.2016.05.012
25 WANG Y L, WANG K Y, ZHANG Z X, et al Control strategy and experimental research of a cable-driven lower limb rehabilitation robot[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2020, 235 (13): 2468- 2481
26 CHEN Q, ZI B, SUN Z, et al Design and development of a new cable-driven parallel robot for waist rehabilitation[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24 (4): 1497- 1507
doi: 10.1109/TMECH.2019.2917294
27 PLOOIJ M, KELLER U, STERKE B, et al Design of RYSEN: an intrinsically safe and low-power three-dimensional overground body weight support[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 2253- 2260
doi: 10.1109/LRA.2018.2812913
28 吴博松. 基于仿肌肉柔索驱动的下肢康复机器人研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
WU Bo-song. Research on lower limb rehabilitation robot based on imitating muscle wire-drive [D]. Harbin: Harbin Engineering University, 2017.
29 DUAN Q J, VASHISTA V, AGRAWAL S K Effect on wrench-feasible workspace of cable-driven parallel robots by adding springs[J]. Mechanism and Machine Theory, 2015, 86: 201- 210
doi: 10.1016/j.mechmachtheory.2014.12.009
[1] 李伟达,李娟,李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁. 欠驱动异构式下肢康复机器人动力学分析及参数优化[J]. 浙江大学学报(工学版), 2021, 55(2): 222-228.