| 
					
						| 
								
									| 能源工程、机械工程 |  |     |  |  
    					|  |  
    					| Z-CoS2-MoS2/rGO的合成及电化学储锂性能 |  
						| 姜孝男(  ),徐刚,陈卫祥*(  ) |  
					| 浙江大学 化学系,浙江 杭州 310027 |  
						|  |  
    					| Synthesis of Z-CoS2-MoS2/rGO composite and its electrochemical lithium storage performance |  
						| Xiao-nan JIANG(  ),Gang XU,Wei-xiang CHEN*(  ) |  
						| Department of Chemistry, Zhejiang University, Hangzhou 310027, China |  
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| 1 | TENG Y Q, ZHAO H L, ZHANG Z J, et al MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes [J]. ACS Nano, 2016, 10 (9): 8526- 8535 doi: 10.1021/acsnano.6b03683
 |  
																| 2 | LIANG S Q, ZHOU J, LIU J, et al PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties [J]. CrystEngComm, 2013, 15 (25): 4998- 5002 doi: 10.1039/c3ce40392k
 |  
																| 3 | WANG Q F, ZOU R Q, XIA W, et al Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-Doped porous carbon shell for high performance lithium-ion batteries [J]. Small, 2015, 11 (21): 2511- 2517 doi: 10.1002/smll.201403579
 |  
																| 4 | LUO B, FANG Y, WANG B, et al Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage [J]. Energy and Environmental Science, 2012, 5 (1): 5226- 5230 doi: 10.1039/C1EE02800F
 |  
																| 5 | DU G, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communication, 2010, 46 (7): 1106- 1108 doi: 10.1039/B920277C
 |  
																| 6 | XIAO J, CHOI D, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524 doi: 10.1021/cm101254j
 |  
																| 7 | CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728 doi: 10.1021/nn200659w
 |  
																| 8 | 朱清, 任王瑜, 姜孝男, 等 Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能 [J]. 浙江大学学报: 工学版, 2019, 53 (7): 1306- 1314 ZHU Qing, REN Wang-yu, JIANG Xiao-nan, et al Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1306- 1314
 |  
																| 9 | YE J B, MA L, CHEN W X, et al Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage [J]. Journal of Materials Chemistry A, 2015, 3 (13): 6884- 6893 doi: 10.1039/C5TA00006H
 |  
																| 10 | KUANG P Y, TONG T, FAN K, et al In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range[J]. ACS Catalysis, 2017, 7 (9): 6179- 6187 doi: 10.1021/acscatal.7b02225
 |  
																| 11 | HU P, JIA Z Y, WANG Y, et al Interface engineering of hierarchical MoS2/ZnS/C heterostructures as anode materials for highly improved lithium storage capability [J]. ACS Applied Energy Materials, 2020, 3 (8): 7856- 7864 doi: 10.1021/acsaem.0c01266
 |  
																| 12 | ZHANG Y, SUN W P, RUI X H, et al One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors [J]. Small, 2015, 11 (30): 3694- 702 doi: 10.1002/smll.201403772
 |  
																| 13 | BAI Y, ZENG M, WU X, et al Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage[J]. Applied Surface Science, 2020, 510: 145477 doi: 10.1016/j.apsusc.2020.145477
 |  
																| 14 | HE Q, LIU J S, LI Z H, et al Solvent-free synthesis of uniform MOF shell-derived carbon confined SnO2/Co nanotubes for highly reversible lithium storage [J]. Small, 2017, 13 (37): 1701504 doi: 10.1002/smll.201701504
 |  
																| 15 | YUAN Y, CHEN X Y, ZHANG X, et al A MOF-derived CuCo(O)@ carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane[J]. Inorganic Chemistry Frontiers, 2020, 7 (10): 2043- 2049 doi: 10.1039/D0QI00023J
 |  
																| 16 | HUANG G C, CHEN T, CHEN W X, et al Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium [J]. Small, 2013, 9 (21): 3693- 3703 doi: 10.1002/smll.201300415
 |  
																| 17 | XU S R, ZHU Q, CHEN T, et al Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances [J]. Materials Chemistry and Physics, 2018, 219: 399- 410 doi: 10.1016/j.matchemphys.2018.08.048
 |  
																| 18 | WANG S G, LI X, CHEN Y, et al A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy [J]. Advanced Materials, 2015, 27 (17): 2775- 2782 doi: 10.1002/adma.201500870
 |  
																| 19 | ZUO X X, CHANG K, ZHAO J, et al Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material [J]. Journal of Materials Chemistry A, 2016, 4 (1): 51- 58 doi: 10.1039/C5TA06869J
 |  
																| 20 | MA Z L, LI Z, HU K, et al The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer [J]. Journal of Power Sources, 2016, 325: 71- 78 doi: 10.1016/j.jpowsour.2016.04.139
 |  
																| 21 | DENG Z H, LI L, DING W, et al Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction [J]. Chemical Communication, 2015, 51: 1893 doi: 10.1039/C4CC08491H
 |  
																| 22 | ZHU K X, ZHU Z, JIN B, et al 3D flower-like Co1−xS/MoS2 composite for long-life and high-rate lithium storage [J]. Journal of Energy Storage, 2020, 20: 101135 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |