Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (1): 152-160    DOI: 10.3785/j.issn.1008-973X.2022.01.017
能源工程、机械工程     
Z-CoS2-MoS2/rGO的合成及电化学储锂性能
姜孝男(),徐刚,陈卫祥*()
浙江大学 化学系,浙江 杭州 310027
Synthesis of Z-CoS2-MoS2/rGO composite and its electrochemical lithium storage performance
Xiao-nan JIANG(),Gang XU,Wei-xiang CHEN*()
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1670 KB)   HTML
摘要:

为了研发比容量高和循环性能稳定的电化学储锂电极材料,用二甲基咪唑钴(ZIF-67)作为Co源前驱体,通过一步水热法制备Z-CoS2-MoS2/rGO(还原氧化石墨烯)复合材料,研究微观结构和电化学储锂性能. 结果表明,与采用CoCl2作为钴源制得的CoS2-MoS2/rGO相比,Z-CoS2-MoS2/rGO复合材料中CoS2粒子有着更加细小和较均匀的粒径,很好地分散在MoS2和rGO表面,形成了相应的异质结构. 作为电化学储锂电极材料,Z-CoS2-MoS2/rGO的可逆比容量可以达到1 092 mA·h/g,经900次循环后在500 mA/g电流密度下保持了941 mA·h/g的储锂可逆比容量,显示了稳定的充放电循环性能. Z-CoS2-MoS2/rGO优异的电化学储锂性能主要归因于该双金属硫化物复合材料具有较多的电化学储锂电极反应电对以及复合材料中CoS2纳米颗粒、MoS2纳米片和rGO之间均匀的复合及所形成的异质结构.

关键词: 金属硫化物复合材料二甲基咪唑钴二硫化钴二硫化钼电化学储锂    
Abstract:

Dimethyl imidazole cobalt (ZIF-67) was employed as the cobalt source precursor to prepare Z-CoS2-MoS2/rGO (reduced graphene oxide) composite material by one-step hydrothermal method in order to develop the electrode materials for electrochemical lithium storage with high specific capacity and stable cycle performance. The microstructure and electrochemical lithium storage performance were analyzed. Results showed that the CoS2 particles in the Z-CoS2-MoS2/rGO composite had a smaller and more uniform particle size compared with CoS2-MoS2/rGO prepared by using CoCl2 as the cobalt source, and dispersed in MoS2 and the surface of rGO, forming the corresponding heterostructure. The reversible specific capacity of Z-CoS2-MoS2/rGO can reach 1 092 mA·h/g as an electrochemical lithium storage electrode material, and maintains 941 mA·h/g at a current density of 500 mA/g after 900 cycles, demonstrating its stable cycle performance. The excellent electrochemical lithium storage performance of Z-CoS2-MoS2/rGO is mainly attributed to the bimetallic sulfide composite that has more redox pairs for electrochemical lithium storage and the heterostructure formed by the uniform composited of CoS2 nanoparticles, MoS2 nanosheets and rGO.

Key words: metal sulfide composite    dimethyl imidazole cobalt    CoS2    MoS2    electrochemical lithium storage
收稿日期: 2021-01-25 出版日期: 2022-01-05
CLC:  TM 911  
基金资助: 国家自然科学基金资助项目(21473156);浙江省科技计划资助项目(2015C01001)
通讯作者: 陈卫祥     E-mail: dd52143@qq.com;weixiangchen@zju.edu.cn
作者简介: 姜孝男(1997—),男,硕士生,从事锂离子电池的研究. orcid.org/0000-0002-7606-521X. E-mail: dd52143@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
姜孝男
徐刚
陈卫祥

引用本文:

姜孝男,徐刚,陈卫祥. Z-CoS2-MoS2/rGO的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2022, 56(1): 152-160.

Xiao-nan JIANG,Gang XU,Wei-xiang CHEN. Synthesis of Z-CoS2-MoS2/rGO composite and its electrochemical lithium storage performance. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 152-160.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.017        https://www.zjujournals.com/eng/CN/Y2022/V56/I1/152

图 1  不同复合材料样品的XRD图
图 2  不同复合材料的SEM图
样品 nConMo n(Co+Mo)nS
MoS2/rGO - 1∶2.11
CoS2-MoS2/rGO 1∶1.18 1∶2.18
Z-CoS2-MoS2/rGO 1∶1.13 1∶2.20
表 1  MoS2/rGO, CoS2-MoS2/rGO和Z-CoS2-MoS2/rGO 复合材料中Co、Mo和S元素的物质的量比
图 3  MoS2/rGO、CoS2-MoS2/rGO和Z-CoS2-MoS2/rGO复合材料的热重分析曲线
图 4  不同复合材料的TEM/HRTEM图
图 5  Z-CoS2-MoS2/rGO复合材料的XPS图
图 6  电极电化学储锂前3圈的循环伏安曲线(扫描速度为1.0 mV/s)
图 7  不同复合材料电极的前3圈充放电曲线(电流密度为100 mA/g)
图 8  MoS2/rGO、CoS2-MoS2/rGO、Z-CoS2-MoS2/rGO复合电极的循环性能(电流密度为100 mA/g)
图 9  不同复合材料电极的充放电倍率特性和Z-CoS2-MoS2/rGO电极的充放电长循环性能
图 10  不同复合材料极的电化学阻抗图和相应的等效电路(CPE代表恒相位元)
电极材料 Re Rf Rct
MoS2/rGO 10.97 35.27 55.77
CoS2-MoS2/rGO 11.22 43.82 65.58
Z-CoS2-MoS2/rGO 10.74 26.42 36.24
表 2  电化学阻抗拟合得到的电极动力学参数
1 TENG Y Q, ZHAO H L, ZHANG Z J, et al MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes [J]. ACS Nano, 2016, 10 (9): 8526- 8535
doi: 10.1021/acsnano.6b03683
2 LIANG S Q, ZHOU J, LIU J, et al PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties [J]. CrystEngComm, 2013, 15 (25): 4998- 5002
doi: 10.1039/c3ce40392k
3 WANG Q F, ZOU R Q, XIA W, et al Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-Doped porous carbon shell for high performance lithium-ion batteries [J]. Small, 2015, 11 (21): 2511- 2517
doi: 10.1002/smll.201403579
4 LUO B, FANG Y, WANG B, et al Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage [J]. Energy and Environmental Science, 2012, 5 (1): 5226- 5230
doi: 10.1039/C1EE02800F
5 DU G, GUO Z P, WANG S Q, et al Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communication, 2010, 46 (7): 1106- 1108
doi: 10.1039/B920277C
6 XIAO J, CHOI D, COSIMBESCU L, et al Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries [J]. Chemistry of Materials, 2010, 22 (16): 4522- 4524
doi: 10.1021/cm101254j
7 CHANG K, CHEN W X L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries [J]. ACS Nano, 2011, 5 (6): 4720- 4728
doi: 10.1021/nn200659w
8 朱清, 任王瑜, 姜孝男, 等 Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能 [J]. 浙江大学学报: 工学版, 2019, 53 (7): 1306- 1314
ZHU Qing, REN Wang-yu, JIANG Xiao-nan, et al Synthesis of Bi2S3-MoS2/graphene hybrids and their electrochemical lithium storage performances [J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1306- 1314
9 YE J B, MA L, CHEN W X, et al Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage [J]. Journal of Materials Chemistry A, 2015, 3 (13): 6884- 6893
doi: 10.1039/C5TA00006H
10 KUANG P Y, TONG T, FAN K, et al In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range[J]. ACS Catalysis, 2017, 7 (9): 6179- 6187
doi: 10.1021/acscatal.7b02225
11 HU P, JIA Z Y, WANG Y, et al Interface engineering of hierarchical MoS2/ZnS/C heterostructures as anode materials for highly improved lithium storage capability [J]. ACS Applied Energy Materials, 2020, 3 (8): 7856- 7864
doi: 10.1021/acsaem.0c01266
12 ZHANG Y, SUN W P, RUI X H, et al One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors [J]. Small, 2015, 11 (30): 3694- 702
doi: 10.1002/smll.201403772
13 BAI Y, ZENG M, WU X, et al Three-dimensional cage-like Si@ZIF-67 core-shell composites for high-performance lithium storage[J]. Applied Surface Science, 2020, 510: 145477
doi: 10.1016/j.apsusc.2020.145477
14 HE Q, LIU J S, LI Z H, et al Solvent-free synthesis of uniform MOF shell-derived carbon confined SnO2/Co nanotubes for highly reversible lithium storage [J]. Small, 2017, 13 (37): 1701504
doi: 10.1002/smll.201701504
15 YUAN Y, CHEN X Y, ZHANG X, et al A MOF-derived CuCo(O)@ carbon–nitrogen framework as an efficient synergistic catalyst for the hydrolysis of ammonia borane[J]. Inorganic Chemistry Frontiers, 2020, 7 (10): 2043- 2049
doi: 10.1039/D0QI00023J
16 HUANG G C, CHEN T, CHEN W X, et al Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium [J]. Small, 2013, 9 (21): 3693- 3703
doi: 10.1002/smll.201300415
17 XU S R, ZHU Q, CHEN T, et al Hydrothermal synthesis of Co-doped-MoS2/reduced graphene oxide hybrids with enhanced electrochemical lithium storage performances [J]. Materials Chemistry and Physics, 2018, 219: 399- 410
doi: 10.1016/j.matchemphys.2018.08.048
18 WANG S G, LI X, CHEN Y, et al A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy [J]. Advanced Materials, 2015, 27 (17): 2775- 2782
doi: 10.1002/adma.201500870
19 ZUO X X, CHANG K, ZHAO J, et al Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material [J]. Journal of Materials Chemistry A, 2016, 4 (1): 51- 58
doi: 10.1039/C5TA06869J
20 MA Z L, LI Z, HU K, et al The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer [J]. Journal of Power Sources, 2016, 325: 71- 78
doi: 10.1016/j.jpowsour.2016.04.139
21 DENG Z H, LI L, DING W, et al Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction [J]. Chemical Communication, 2015, 51: 1893
doi: 10.1039/C4CC08491H
22 ZHU K X, ZHU Z, JIN B, et al 3D flower-like Co1−xS/MoS2 composite for long-life and high-rate lithium storage [J]. Journal of Energy Storage, 2020, 20: 101135
[1] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[2] 侯世成,任王瑜,朱清,陈卫祥. Ni掺杂MoS2/石墨烯催化剂的制备及其电催化析氢活性[J]. 浙江大学学报(工学版), 2019, 53(8): 1610-1617.
[3] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[4] 马琳 陈卫祥 李翔 郑遗凡. 无机类富勒烯MoS2纳米粒子的合成和表征[J]. J4, 2007, 41(12): 2103-2106.