Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (10): 1936-1945    DOI: 10.3785/j.issn.1008-973X.2019.10.011
土木工程     
风雨下考虑偏航效应风力机流场及气动载荷
柯世堂1,3(),余文林2,徐璐1,杜凌云1,余玮1,杨青3
1. 南京航空航天大学 土木工程系,江苏 南京 210016
2. 中国能源建设集团 江苏省电力设计院有限公司,江苏 南京 211102
3. 南京航空航天大学 江苏省风力机设计高技术研究重点实验室,江苏 南京 210016
Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction
Shi-tang KE1,3(),Wen-lin YU2,Lu XU1,Ling-yun DU1,Wei YU1,Qing YANG3
1. Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Jiangsu Power Design Institute Limited Company, China Energy Engineering Group, Nanjing 211102, China
3. Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(2058 KB)   HTML
摘要:

为了研究狂风暴雨环境中大型风力机在复杂工况下的流场特性和气动性能,以南京航空航天大学自主研发的5 MW风力机塔架-叶片体系为例,采用计算流体动力学(CFD)技术开展最不利叶片停机位置下考虑6个偏航角(0°、5°、10°、20°、30°和45°)影响的风力机风场模拟,添加离散相模型(DPM)开展风-雨耦合同步迭代计算,对比研究不同偏航角对风力机周围风场和雨场特性的影响规律. 建立不同偏航角下的风-雨等效压力系数新模型,给出相应的公式,针对风雨作用下的不同偏航角工况塔架和叶片表面等效压力系数进行系统分析. 研究结果表明,附加雨荷载效应对该类风力机叶片迎风面和塔架迎风面两侧各40°区域内压力的影响不容忽视.

关键词: 风雨共同作用风力机偏航效应计算流体动力学(CFD)流场特性气动载荷    
Abstract:

The wind field of wind turbine considering 6 yaw angles (0, 5, 10, 20, 30 and 45 degrees) under the worst blade stop position was simulated based on computational fluid dynamics (CFD) method in order to analyze the flow field characteristics and aerodynamic performance of large-scale wind turbines under complex operating conditions in severe storms and rainstorms. A 5 MW wind turbine researched independently by Nanjing University of Aeronautics and Astronautics was taken as an example. The discrete phase model (DPM) was added and the wind-rain coupling synchronous iterative calculation was conducted. Then the effects of different yaw angles on the characteristics of wind field and rain field around wind turbines were analyzed. The new models of wind-rain equivalent pressure coefficient were constructed, and corresponding calculation formulas were presented. The equivalent pressure coefficient of tower and blades were systematically analyzed for different yaw angles conditions under wind and rain interaction. Results show that the effect of additional rain load on the pressure on the windward side of the blade and the 40 degrees on both sides of the windward side of the tower cannot be neglected.

Key words: wind -rain interaction    wind turbine    yaw effect    computational fluid dynamics (CFD)    flow field characteristics    aerodynamic load
收稿日期: 2018-05-29 出版日期: 2019-09-30
CLC:  TK 83  
作者简介: 柯世堂(1982—),男,教授,博导,从事结构抗风与抗震研究. orcid.org/0000-0003-0240-3578. E-mail: keshitang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
柯世堂
余文林
徐璐
杜凌云
余玮
杨青

引用本文:

柯世堂,余文林,徐璐,杜凌云,余玮,杨青. 风雨下考虑偏航效应风力机流场及气动载荷[J]. 浙江大学学报(工学版), 2019, 53(10): 1936-1945.

Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.10.011        http://www.zjujournals.com/eng/CN/Y2019/V53/I10/1936

参数 数值 叶片三维模型 整机三维模型
塔架高度 124 m
塔顶半径 3.0 m
塔底半径 3.5 m
塔顶厚度 0.04 m
塔底厚度 0.09 m
叶片长度 60 m
表 1  MW大型风力机主要结构设计参数及模型示意图
图 1  偏航状态下风力机实际与等效风向俯视图
图 2  计算域及网格划分示意图
Dp / mm ΔD/mm Dp / mm ΔD/mm
1 0~1.5 4 3.5~4.5
2 1.5~2.5 5 4.5~5.5
3 2.5~3.5 6 5.5~6.0
表 2  雨滴直径分组
图 3  风场下CFD模拟结果与规范值对比图
图 4  各工况风力机塔架典型截面环向风压系数分布曲线
图 5  各工况风力机塔架显著干扰区段典型截面速度流线图
图 6  各工况风力机塔架显著干扰区段典型截面涡量分布图
图 7  各工况下风力机塔架和叶片表面雨滴与末速度分布
图 8  各工况下风力机塔架和叶片不同高度范围下雨荷载分布
图 9  各工况下的风力机表面雨滴落点图
图 10  不同偏航角下塔架典型截面环向雨压系数分布
图 11  各工况风力机叶片雨压系数对比
图 12  各工况风力机塔架典型断面等效压力系数分布曲线
图 13  各工况风力机叶片等效压力系数分布曲线
1 JEONG M S, KIM S W, LEE I, et al The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade[J]. Renewable Energy, 2013, 60 (5): 256- 268
2 叶昭良, 王晓东, 康顺 水平轴风力机偏航气动性能分析[J]. 工程热物理学报, 2018, 39 (5): 985- 991
YE Zhao-liang, WANG Xiao-dong, KANG Shun Analysis of yaw aerodynamic performance of horizontal axis wind turbine[J]. Journal of Engineering Thermophysics, 2018, 39 (5): 985- 991
3 WANG Q, ZHOU H, WAN D Numerical simulation of wind turbine blade-tower interaction[J]. Journal of Marine Science and Application, 2012, 11 (3): 321- 327
doi: 10.1007/s11804-012-1139-9
4 KE S T, YU W, WANG T G, et al Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade[J]. Wind and Structures, An International Journal, 2016, 23 (6): 559- 575
doi: 10.12989/was.2016.23.6.559
5 KEEGAN M H, NASH D H, STACK M M. Modelling rain drop impact of offshore wind turbine blades [C]// ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark: ASME, 2012: 887-898.
6 许德福, 孙文磊, 樊军 定风速下偏航失控和叶轮过速时的塔架载荷分析[J]. 可再生能源, 2011, 29 (5): 24- 27
XU De-fu, SUN Wen-lei, FAN Jun Analysis of the tower load during the control of the drift of uncontrollable and impeller in wind speed[J]. Renewable Energy, 2011, 29 (5): 24- 27
7 STAINO A, BASU B Dynamics and control of vibrations in wind turbines with variable rotor speed[J]. Engineering Structures, 2013, 56 (6): 58- 67
8 周文平, 唐胜利 水平轴风力机稳定偏航气动性能计算[J]. 太阳能学报, 2011, 32 (9): 1315- 1320
ZHOU Wen-ping, TANG Sheng-li Horizontal axis wind turbine stability and yaw aerodynamic performance calculation[J]. Acta Energiae Solaris Sinica, 2011, 32 (9): 1315- 1320
9 江波, 史萌萌, 李奕 风轮偏航对风力机气动性能数值模拟分析研究[J]. 电网与清洁能源, 2014, 30 (3): 123- 127
JIANG Bo, SHI Meng-meng, LI Yi Numerical simulation analysis of aerodynamic performance of wind turbines[J]. Power Grid and Clean Energy, 2014, 30 (3): 123- 127
10 廖明夫, 黄巍, 董礼, 等 风力机偏航引起的失稳振动[J]. 太阳能学报, 2009, 30 (4): 488- 492
LIAO Ming-fu, HUANG Wei, DONG Li, et al Instability vibration caused by yaw of wind turbine[J]. Acta Energiae Solaris Sinica, 2009, 30 (4): 488- 492
11 柯世堂, 王同光 偏航状态下风力机塔架-叶片耦合结构气弹响应分析[J]. 振动与冲击, 2015, 34 (18): 33- 38
KE Shi-tang, WANG Tong-guang Analysis of the air missile response of the wind turbine tower - blade coupling structure[J]. Journal of Vibration and Shock, 2015, 34 (18): 33- 38
12 于淼. 低矮建筑风雨作用效应的数值与实测研究[D]. 杭州: 浙江大学, 2013.
YU Miao. Numerical and experimental study on wind and rain effect of low-rise buildings [D]. Hangzhou: Zhejiang University, 2013.
13 王剑, 毕继红, 何旭辉, 等 风雨激振中斜拉索倾角对水线及拉索振动的影响[J]. 振动工程学报, 2018, 31 (1): 57- 66
WANG Jian, BI Ji-hong, HE Xu-hui, et al Effect of inclined angle of inclined cable on vibration of water line and cable during rain-induced vibration[J]. Journal of Vibration Engineering, 2018, 31 (1): 57- 66
14 孙芳锦, 王岩露, 冯旭, 等 风雨联合作用下风向对大跨度悬挑屋盖的压力分布影响研究[J]. 防灾减灾工程学报, 2018, 38 (3): 542- 547
SUN Fang-jin, WANG Yan-lu, FENG Xu, et al Effect of wind and rain on pressure distribution of large-span cantilever roof[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38 (3): 542- 547
15 周超, 李力, 刘衍平 分裂输电导线风雨致振机理及分析模型[J]. 噪声与振动控制, 2017, 37 (1): 49- 52
ZHOU Chao, LI Li, LIU Yan-ping Mechanism and analysis model of wind and rain induced vibration of split transmission conductor[J]. Noise and Vibration Control, 2017, 37 (1): 49- 52
16 毕继红, 乔浩玥, 关健, 等 带有纵向肋条斜拉索的风雨激振减振机理研究[J]. 工程力学, 2018, 35 (4): 168- 175
BI Ji-hong, QIAO Hao-yue, GUAN Jian, et al Study on the mechanism of rain-induced vibration reduction with longitudinal rib stay[J]. Engineering Mechanics, 2018, 35 (4): 168- 175
17 王修勇, 蒋乾超, 孙洪鑫, 等 斜拉桥拉索风雨激振参数联合概率分布模型[J]. 土木工程学报, 2017, 50 (10): 69- 74
WANG Xiu-yong, JIANG Qian-chao, SUN Hong-xin, et al Combined probability distribution model of rain-wind induced vibration parameters of cable-stayed bridges[J]. China Civil Engineering Journal, 2017, 50 (10): 69- 74
18 陈博文. 低矮房屋表面风雨压力CFD数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009.
CHEN Bo-wen. Numerical simulation of wind and rain pressure on low building surface [D]. Harbin: Harbin Institute of Technology, 2009.
19 MCFARQUHAR G M, LIST R The raindrop mean free path and collision rate dependence on rainrate for three-peak equilibrium and Marshall-Palmer distributions[J]. Journal of the Atmospheric Sciences, 2010, 48 (3): 1999- 2004
20 董辉, 高乾丰, 邓宗伟, 等 大型风力机风雨荷载特性数值研究[J]. 振动与冲击, 2015, 34 (15): 17- 22
DONG Hui, GAO Qian-feng, DENG Zong-wei, et al Large wind turbine wind load characteristics of the numerical study[J]. Journal of Vibration and Shock, 2015, 34 (15): 17- 22
[1] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[2] 吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2196-2203.
[3] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[4] 徐文浩,邱展,喻伯平,王福新. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.
[5] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445.
[6] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[7] 袁仁育, 罗坤, 汪建文, 冀文举, 张立茹, 王强, 樊建人. 动态入流条件下风力机运行控制的数值模拟[J]. 浙江大学学报(工学版), 2018, 52(11): 2128-2135.
[8] 周涛, 何炎平, 孟龙, 赵永生. 新型6 MW单柱浮式风力机耦合运动分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1864-1873.
[9] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[10] 柯世堂,余玮,王同光. 停机状态叶片位置对风力机体系气动性能影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1230-1238.
[11] 殷秀兴, 顾亚京, 林勇刚, 叶杭冶, 李伟. 复现风力机五自由度载荷的加载控制方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1470-1477.
[12] 柯世堂, 王同光, 陈少林, 葛耀君. 大型风力机全机风振响应和等效静力风荷载[J]. 浙江大学学报(工学版), 2014, 48(4): 686-692.
[13] 郭轶楠, 雷刚, 王天祥, 王凯, 孙大明. Taconis热声振荡的数值模拟[J]. J4, 2014, 48(2): 327-333.
[14] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[15] 罗尧治,孙斌. 建筑物周围风致静压场的风洞试验及数值模拟[J]. J4, 2013, 47(7): 1148-1156.