Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2128-2135    DOI: 10.3785/j.issn.1008-973X.2018.11.011
机械与能源工程     
动态入流条件下风力机运行控制的数值模拟
袁仁育1, 罗坤1, 汪建文2, 冀文举2, 张立茹2, 王强1, 樊建人1
1. 浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027;
2. 内蒙古工业大学 风能太阳能利用技术教育部省部共建重点实验室, 内蒙古 呼和浩特 010051
Numerical simulation of wind turbine operation control under dynamic inflow condition
YUAN Ren-yu1, LUO Kun1, WANG Jian-wen2, JI Wen-ju2, ZHANG Li-ru2, WANG Qiang1, FAN Jian-ren1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
2. Key Laboratory of Wind and Solar Power Energy Utilization Technology Ministry of Education and Inner Mongolia Construction, Inner Mongolia University of Technology, Hohhot 010051, China
 全文: PDF(1222 KB)   HTML
摘要:

在动态入流条件下,采用基于致动线模型的大涡模拟方法对一台1.5 MW的商用风力发电机组的转速、转矩以及输出功率的响应特性进行数值模拟.在对数风廓线模型的基础上,通过引入正弦波动获得动态入流边界条件.对风力机引入比例积分变桨距控制和转矩控制,实现对动态入流的追踪.研究结果表明,在当前的变桨距控制和转矩控制条件下,风力机的转速、转矩、输出功率能够很好地响应入流风速的变化.在风加速阶段,三者都在额定风速时达到额定值;当入流风速减到额定风速后,变桨距控制以及转速、转矩、功率的下降都存在10 s的延迟;模拟得到的功率曲线与风力机实际功率曲线整体上吻合良好,不过在风速小于9 m/s的区间段还存在着一定的偏差,有待于进一步优化.

Abstract:

The response characteristics of speed, torque and output power of a 1.5 MW commercial wind turbine were simulated based on the large eddy simulation with actuator line method under dynamic inflow condition. On the basis of the logarithmic wind profile model, the sine wave was introduced to develop the dynamic inflow boundary condition. The proportional-integral pitch control and torque control were adopted for the wind turbine to track the dynamic inflow. Results showed that under the effect of pitch control and torque control, the speed, torque and output power of the wind turbine responded well to the change of the inflow wind speed, and all of them reached their rated values at the rated wind speed during the wind acceleration phase. There was a delay of 10 s for the pitch control and the decline of speed, torque and power after the inflow wind speed reduced to the rated value. The simulated wind turbine power curve agreed well with the actual power curve in general, but there was still a certain deviation when the wind speed was less than 9 m/s, which needs further optimization.

收稿日期: 2017-09-08 出版日期: 2018-11-22
CLC:  TK83  
基金资助:

国家自然科学基金资助项目(51766014);内蒙古自然科学基金资助项目(2016ZD04)

通讯作者: 罗坤,男,教授.orcid.org/0000-0003-3644-9400.     E-mail: zjulk@zju.edu.cn
作者简介: 袁仁育(1990-),男,博士生,从事风能利用过程的多尺度模拟研究.orcid.org/0000-0002-9597-278X.E-mail:yuanry571@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

袁仁育, 罗坤, 汪建文, 冀文举, 张立茹, 王强, 樊建人. 动态入流条件下风力机运行控制的数值模拟[J]. 浙江大学学报(工学版), 2018, 52(11): 2128-2135.

YUAN Ren-yu, LUO Kun, WANG Jian-wen, JI Wen-ju, ZHANG Li-ru, WANG Qiang, FAN Jian-ren. Numerical simulation of wind turbine operation control under dynamic inflow condition. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2128-2135.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.011        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2128

[1] SUN X, HUANG D. An explosive growth of wind power in China[J]. International Journal of Green Energy, 2014, 11(8):849-860.
[2] 刘磊. 风力机叶片非定常气动特性的研究[D]. 北京:中国科学院研究生院工程热物理研究所, 2012:2-3. LIU Lei. Research on the unsteady aerodynamics characteristics of wind turbine blades[D]. Beijing:Chinese Academy of Sciences:Institute of Engineering Thermophysics, 2012:2-3.
[3] KNUDSEN T, BAK T. Simple model for describing and estimating wind turbine dynamic inflow[C]//2013 American Control Conference. Washington:IEEE, 2013, 45:640-646.
[4] ODGAAARD P F, KNUDSEN T, OVERGAARD A, et al. Importance of dynamic inflow in model predictive control of wind turbines[J]. IFAC-Papers OnLine, 2015, 48(30):90-95.
[5] KAMEL R M, CHAOUACHI A, NAGASAKA K. Micro-grid dynamic response enhancement using new proportional integral wind turbine pitch controller and neuro-fuzzy photovoltaic maximum power point tracking controller[J]. Electric Power Components and Systems, 2009, 38(2):212-239.
[6] 刘雄, 张宪民, 陈严, 等. 基于动态入流理论的水平轴风力机动态气动载荷计算模型[J]. 太阳能学报, 2009, 30(4):412-419 LIU Xiong, ZHANG Xian-min, CHEN Yan, et al. Transient aerodynamic load prediction model for horizontal axis wind turbines based on dynamics inflow theory[J]. Acta Energiae Solaris Sinica, 2009, 30(4):412-419
[7] 陈严, 沈世, 马新稳, 等. 柔性风轮的动态入流效应研究[J]. 空气动力学学报, 2013, 31(3):401-406 CHEN Yan, SHEN Shi, MA Xin-wen, et al. Research of dynamic inflow effect on flexible turbine rotor[J]. Acta Aerodynamic Sinica, 2013, 31(3):401-406
[8] CHURCHFIELD M J, LEE S, MORIARTY P J, et al. A large-eddy simulation of wind-plant aerodynamics[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville:AIAA, 2012:1-17.
[9] KROGSTAD P, ERIKSEN P E. "Blind test" calculations of the performance and wake development for a model wind turbine[J]. Renewable Energy, 2013(50):325-333.
[10] SANDERSE B, PIJL S P, KOREN B. Review of computational fluid dynamics for wind turbine wake aerodynamics[J]. Wind Energy, 2011, 14(7):799-819.
[11] BAEZ-VIDAL A, LEHMKUHL O, VALDIVIESO D M, et al. Parallel large eddy simulations of wind farms with the actuator line method[J]. Procedia Engineering, 2013, 61:227-232.
[12] SØRENSEN J N, SHEN W Z. Numerical modeling of wind turbine wakes[J]. Journal of Fluids Engineering, 2002, 124(2):393.
[13] SARLAK H, MENEVEAU C, SØRENSEN J N. Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions[J]. Renewable Energy, 2015(77):386-399.
[14] SARMAST S, CHIVAEE H S, IVANELL S, et al. Numerical investigation of the wake interaction between two model wind turbines with span-wise offset[J]. Journal of Physics:Conference Series, 2014, 524(1):012137.
[15] GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al. Wind plant power optimization through yaw control using a parametric model for wake effects:a CFD simulation study[J]. Wind Energy, 2016, 19(1):95-114.
[16] SARLAK H, NISHINO T, MARTÍNEZ-TOSSAS L A, et al. Assessment of blockage effects on the wake characteristics and power of wind turbines[J]. Renewable Energy, 2016(93):340-352.
[17] 李鹏飞, 万德成, 刘建成. 基于致动线模型的风力机尾流场数值模拟[J]. 水动力学研究与进展, 2016, 31(2):127-134 LI Peng-fei, WAN De-cheng, LIU Jian-cheng. Numerical simulations of wake flows of wind turbine based on actuator line model[J]. Chinese Journal of Hydrodynamics, 2016, 31(2):127-134
[18] 王胜军. 基于致动线模型的风力机尾流特性研究[D]. 北京:中国科学院研究生院工程热物理研究所, 2014:25-27. WANG Sheng-jun. Study on wake characteristics of wind turbines based on actuator line model[D]. Beijing:Chinese Academy of Science:Institute of Engineering Thermophysics, 2014:25-27.
[19] TROLDBORG N, SORENSEN J N, MIKKELSEN R. Numerical simulations of wake characteristics of a wind turbine in uniform inflow[J]. Wind Energy, 2010, 13(1):86-99.
[20] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Springfield:U.S. Department of Energy, 2009.
[21] QUALLEN S, XING T. CFD simulation of a floating offshore wind turbine system using a variable-speed generator-torque controller[J]. Renewable Energy, 2016(97):230-242.
[22] FLEMING P A, GEBRAAD P M O, LEE S, et al. Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable Energy, 2014(70):211-218.
[23] MARTINEZ L, LEONARDI S, CHURCHFIELD M, et al. A comparison of actuator disk and actuator line wind turbine models and best practices for their use[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville:AIAA, 2012:1-13.

No related articles found!