Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2223-2230    DOI: 10.3785/j.issn.1008-973X.2019.11.021
能源工程     
双层反转垂直轴风力机的流场特性数值模拟
徐文浩(),邱展,喻伯平,王福新*()
上海交通大学 航空航天学院,上海 200240
Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine
Wen-hao XU(),Zhan QIU,Bo-ping YU,Fu-xin WANG*()
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2197 KB)   HTML
摘要:

针对由垂直轴风力机运行过程中的动态失速问题所导致的功率系数较低的问题,提出双层反转构型的垂直轴风力机. 通过在传统垂直轴风力机内侧设置反转向辅助叶片的方式,改善垂直轴风力机流场,从而提高其功率系数. 将该风力机与传统垂直轴风力机进行计算流体动力学数值模拟对比分析,研究不同叶尖速比情况下两者流场特性的差异以及双层风力机内外层风轮起始运转相位差的影响. 通过计算得到的内层辅助叶片的时均扭矩系数为正,不需要额外功率输入. 外层叶片的扭矩系数结果表明,采用这种构型会降低叶片上游区域扭矩系数的峰值,同时大幅提高下游区域扭矩系数,从而实现时均发电效率的提高. 对流场中涡系结构进行分析,结果表明,功率系数提升的原因是内层辅助叶片的反向旋转抑制了主叶片的动态失速. 特别是当叶尖速比为1.85时,在初始相位差为90°的对比算例中,与传统垂直轴风力机相比,新构型下的叶片时均扭矩系数提高了43.92 %.

关键词: 垂直轴风力机叶尖速比双层风轮反转动态失速相位差    
Abstract:

Aiming at the low power coefficient problem caused by dynamic stall during the operation of vertical axis wind turbines (VAWTs), a double-layer counter-rotating VAWT was proposed. By setting the counter-rotating auxiliary blade in the inner of the traditional VAWT, the flow field of the VAWT is improved, thereby the power coefficient is increased. The computational fluid dynamics (CFD) numerical simulation of the proposed wind turbine and traditional VAWT has been carried out. The difference between the flow field characteristics of the two wind turbine configurations under different tip speed ratios (TSRs), and the influence of the initial operating phase difference between inner and outer layers of the double-layer wind turbine were studied. Results show that the time-averaged torque coefficient of the inner auxiliary blade is positive, and extra power input is not required. Results of the torque coefficient of the outer blade show that the arrangement of the proposed wind turbine improves the time-averaged power generation efficiency by reducing the peak value of torque coefficient of the main blade in the upstream, as well as greatly improving the torque coefficient of the main blade in the downstream. The vortex structure in the flow field was analysed, and the results indicates that the main reason for the increase of torque coefficient is that the inner auxiliary blades restrain the dynamic stall phenomenon of the main blade. Especially when the tip speed ratio was 1.85 and the phase difference was 90°, the time-averaged torque coefficient of the main blade of the proposed configuration was increased by 43.92%, compared with that of the traditional VAWT.

Key words: vertical axis wind turbine    tip speed ratio    double-layer wind turbine    counter-rotating    dynamic stall    phase difference
收稿日期: 2018-09-25 出版日期: 2019-11-21
CLC:  TK 83  
基金资助: 国家自然科学基金资助项目(11372178)
通讯作者: 王福新     E-mail: 578009935@qq.com;fuxinwang@sjtu.edu.cn
作者简介: 徐文浩(1994—),男,硕士生,从事风力机气动特性研究. orcid.org/0000-0003-1735-3956. E-mail: 578009935@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
徐文浩
邱展
喻伯平
王福新

引用本文:

徐文浩,邱展,喻伯平,王福新. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.

Wen-hao XU,Zhan QIU,Bo-ping YU,Fu-xin WANG. Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2223-2230.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.021        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2223

图 1  双叶片H型垂直轴风力机简化模型示意图
图 2  双层反转垂直轴风力机构型及传动机构示意图
网格名称 空间位置坐标/m
近场网格 最小值(?2.00,?2.00,?0.51);
最大值(4.00,2.00,0.51)
远场网格 最小值(?5.00,?5.00,?0.51);
最大值(15.00,5.00,0.51)
外层风轮网格 内层半径0.65;外层半径1.05
内层风轮网格 半径0.65
内层网格 半径0.65
表 1  各网格块的空间位置
图 3  计算域及加密的网格块
图 4  单层构型的叶片扭矩系数对比验证
图 5  3种叶尖速比下单层与双层构型在0°相位角处的涡量云图
图 6  3种叶尖速比下单层构型与双层构型主叶片的扭矩系数对比
图 7  内外层叶片相位差分别为0°、90°的情况下不同时刻的涡量云图
图 8  不同构型的主叶片的扭矩系数曲线
图 9  不同叶尖速比下主叶片的时均扭矩系数
图 10  不同叶尖速比下主叶片时均扭矩系数的提升比例
图 11  4种构型风力机处于0°相位角时刻的涡量图
图 12  4种构型的瞬时扭矩系数和时均功率系数对比图
1 TJIU W, MARNOTO T, MAT S, et al Darrieus vertical axis wind turbine for power generation I: assessment of Darrieus VAWT configurations[J]. Renewable Energy, 2015, 75: 50- 67
doi: 10.1016/j.renene.2014.09.038
2 TJIU W, MARNOTO T, MAT S, et al Darrieus vertical axis wind turbine for power generation Ⅱ: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development[J]. Renewable Energy, 2015, 75: 560- 571
doi: 10.1016/j.renene.2014.10.039
3 PARASCHIVOIU I. Wind turbine design: with emphasis on Darrieus concept [M]. [S. l.] Polytechnic International Press, 2002.
4 LI Y, ZHAO S, TAGAWA K, et al Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine[J]. Energy Conversion and Management, 2018, 167: 70- 80
doi: 10.1016/j.enconman.2018.04.062
5 李岩, 郑玉芳, 赵守阳, 等 直线翼垂直轴风力机气动特性研究综述[J]. 空气动力学学报, 2017, 35 (3): 368- 382
LI Yan, ZHENG Yu-fang, ZHAO Shou-yang, et al A review on aerodynamic characteristics of straight-bladed vertical axis wind turbine[J]. Acta Aerodynamica Sinica, 2017, 35 (3): 368- 382
doi: 10.7638/kqdlxxb-2016.0189
6 BUCHBER A J, SORIA J, HONNERY D, et al Dynamic stall in vertical axis wind turbines: scaling and topological considerations[J]. Journal of Fluid Mechanics, 2018, 841: 746- 766
doi: 10.1017/jfm.2018.112
7 DUNNE R. Dynamic stall on vertical axis wind turbine [D]. Pasadena: California Institute of Technology, 2016.
8 GHARIB M, RAMBOD E, SHARIFF K A universal time scale for vortex ring formation[J]. J Fluid Mechanics, 1998, 360 (360): 121- 140
9 DABIRI J O Optimal vortex formation as a unifying principle in biological propulsion[J]. Annual Review of Fluid Mechanics, 2009, 41 (1): 17- 33
doi: 10.1146/annurev.fluid.010908.165232
10 FERREIRA C S, ZUIJLEN V A, BIJL H, et al Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: verification and validation with particle image velocimetry data[J]. Wind Energy, 2010, 13 (1): 1- 17
doi: 10.1002/we.330
11 FERREIRA C S, BUSSEL G V, KUIK G V, et al 2D PIV visualization of dynamic stall on a vertical axis wind turbine[J]. Experiments in Fluids, 2008, 46 (1): 97- 108
12 FERREIRA C S, KUIK G V, BUSSEL G V, et al Visualization by PIV of dynamic stall on a vertical axis wind turbine[J]. Experiments in Fluids, 2009, 46 (1): 97- 108
doi: 10.1007/s00348-008-0543-z
13 LI Q, MAEDA T, KAMADA Y, et al Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine[J]. Energy, 2015, 90: 784- 795
doi: 10.1016/j.energy.2015.07.115
14 WANG Y, SHEN S, LI G, et al Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes[J]. Renewable Energy, 2018, 126
15 BIANCHINI A, BALDUZZI F, RAINBIRD J M, et al. An experimental and numerical assessment of airfoil polars for use in darrieus wind turbines. Part 1: flow curvature effects [J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 032602.
16 MIAU J, LIANG S Y, YU R M, et al Design and test of a vertical-axis wind turbine with pitch control[J]. Applied Mechanics and Materials, 2012, 225: 338- 343
doi: 10.4028/www.scientific.net/AMM.225.338
17 李岩, 郑玉芳, 唐静, 等 叶片后加小翼垂直轴风力机气动特性数值模拟[J]. 东北农业大学学报, 2016, 47 (7): 76- 81
LI Yan, ZHENG Yu-fang, TANG Jing, et al Numerical simulation on aerodynamic characteristics of vertical axis wind turbine with auxiliary blade behind main blade[J]. Journal of Northeast Agricultural University, 2016, 47 (7): 76- 81
doi: 10.3969/j.issn.1005-9369.2016.07.011
18 陈珺, 孙晓晶, 黄典贵 一种叶片前缘前带微小圆柱的垂直轴风力机[J]. 工程热物理学报, 2015, 36 (1): 75- 78
CHEN Jun, SUN Xiao-jing, HUANG Dian-gui A new type of vertical-axis wind turbine equipped with the blades having micro-cylinders installed in front of their leading-edges[J]. Journal of Engineering Thermophysics, 2015, 36 (1): 75- 78
19 WANG Y, LI G, SHEN S, et al Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge[J]. Energy, 2018, 143
20 和庆斌. 双层可伸缩式垂直轴风力机结构及气动特性计算研究[D]. 哈尔滨: 东北农业大学, 2015.
HE Qing-bin. Study on calculation of structure and aerodynamic characteristics for vertical axis wind turbine with double--layer retractile blades [D]. Harbin: Northeast Agricultural University, 2015.
21 DABIRI J O Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays[J]. Journal of Renewable and Sustainable Energy, 2011, 3 (4): 73
22 LI Q, MAEDA T, KAMADA Y, et al Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis. Part I: for predicting aerodynamic loads and performance[J]. Energy, 2016, 106: 443- 452
doi: 10.1016/j.energy.2016.03.089
[1] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.
[2] 曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.
[3] 连启祥,杜志叶,金硕,杨知非,黄国栋,阮江军. 采用瞬态上流元法的油纸绝缘瞬态电场研究[J]. 浙江大学学报(工学版), 2019, 53(2): 399-406.
[4] 边佩翔, 杨志宏, 王勇, 马鹏磊, 王诗雅. Savonius式水轮机水动力学性能[J]. 浙江大学学报(工学版), 2018, 52(2): 268-272.
[5] 阮胤, 邱展, 王福新. 周期激励下NACA 0012翼型单自由度失速颤振研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1870-1880.
[6] 许文媛, 孟濬, 赵夕朦. 基于高速摄像机的动态血压非接触获取[J]. 浙江大学学报(工学版), 2017, 51(10): 2077-2083.
[7] 王剑,胡锡幸,郭吉丰. 二自由度超声波电机位姿检测与控制[J]. 浙江大学学报(工学版), 2014, 48(5): 871-876.
[8] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.
[9] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[10] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[11] 许峰 赵民建 沈雷 李式巨. 一种基于相位差分的GPS比特同步方法[J]. J4, 2007, 41(12): 2031-2035.
[12] 周洁 潘翔 李建龙. 时间反转处理用于目标探测研究[J]. J4, 2007, 41(12): 2044-2047.
[13] 孙大明 邱利民 陈萍 严伟林. 变负载法研究热声发动机的声功输出特性[J]. J4, 2006, 40(6): 966-970.