Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (11): 2231-2237    DOI: 10.3785/j.issn.1008-973X.2019.11.022
能源工程     
采用加湿除湿技术处理浓盐水的实验研究
付清腾(),郭飞,刘晓华*()
大连理工大学 能源与动力学院, 海洋能源利用与节能教育部重点实验室,辽宁 大连 116024
Experimental study of high salinity water treatment by humidification-dehumidification technology
Qing-teng FU(),Fei GUO,Xiao-hua LIU*()
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1169 KB)   HTML
摘要:

针对浓盐水的进一步处理和浓缩问题,基于加湿除湿(HDH)原理,设计了一套小型浓盐水脱盐系统. 选取多面空心球作为填料,扩充加湿腔内的气液接触面积,强化传热传质过程. 利用此实验系统,改变料液中盐的质量分数和体积流量,测量系统单位时间内产水量并计算系统造水比、单位体积产水能耗和脱盐率等评价参数. 利用高速摄像机记录浓盐液滴撞击聚丙烯平板时的铺展特性,进一步分析盐的质量分数对系统性能的影响. 实验结果表明:随着盐的质量分数的升高,系统单位时间内产水量显著下降,单位体积产水能耗增加,但淡水品质并没有改变,脱盐率维持在99.9%以上;对于饱和NaCl溶液,料液体积流量的增加会增加系统单位时间内产水量,但对系统造水比和单位体积产水能耗的影响不明显. 本研究拓宽加湿除湿技术的应用范围,为浓盐水的进一步处理和浓缩提供新参照.

关键词: 加湿除湿浓盐水单位时间内产水量造水比脱盐率    
Abstract:

A small-scale desalination system was presented based on the humidification-dehumidification (HDH) principle, aiming at the further treatment and concentration problem of high salinity water. The multi-faceted hollow balls were used as the packing to expand the gas-liquid contact areas in the humidifier and enhance the heat and mass transfer process. The mass fraction of salt and the volume flow of the feedliquid were changed in this experimental system, and then the water productivity per unit time was measured and the gained output ratio, the specific thermal energy consumption and the salt rejection ratio were calculated. The spreading characteristics of saline droplet impacting on polypropylene plate surface were recorded with a high-speed camera, and the effect of the mass fraction of salt on the HDH desalination system was further analyzed. Results indicated that with the increase of the mass fraction of salt, the water productivity per unit time decreased significantly, the specific thermal energy consumption increased significantly, the quality of the pure water was not reduced, and the salt rejection ratios maintained above 99.9%. For saturated brine, the increase of volume flow increased the water productivity per unit time, and had little effect on the gained output ratio and the specific thermal energy consumption. This study broadens the application field of the HDH technology. A reference for the treatment and concentration of high salinity water with HDH process was proposed.

Key words: humidification-dehumidification    high salinity water    water productivity per unit time    gained output ratio    salt rejection ratio
收稿日期: 2018-12-20 出版日期: 2019-11-21
CLC:  P 747  
基金资助: 国家自然科学基金资助项目(51476017);中央高校基本科研业务费专项基金资助项目(DUT17JC05,DUT17ZD401);大连市青年科技之星资助项目(2017RQ027)
通讯作者: 刘晓华     E-mail: fuqingteng@163.com;lxh723@dlut.edu.cn
作者简介: 付清腾(1995—),男,硕士生,从事加湿除湿脱盐技术研究. orcid.org/0000-0002-3246-1317. E-mail: fuqingteng@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
付清腾
郭飞
刘晓华

引用本文:

付清腾,郭飞,刘晓华. 采用加湿除湿技术处理浓盐水的实验研究[J]. 浙江大学学报(工学版), 2019, 53(11): 2231-2237.

Qing-teng FU,Fei GUO,Xiao-hua LIU. Experimental study of high salinity water treatment by humidification-dehumidification technology. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2231-2237.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.11.022        http://www.zjujournals.com/eng/CN/Y2019/V53/I11/2231

图 1  HDH脱盐系统示意图
图 2  HDH脱盐系统实验装置实物图
图 3  系统单位时间产水量随运行时间变化
图 4  系统单位时间内产水量和脱盐率随料液中盐的质量分数的变化
图 5  动态液膜铺展面积随时间的变化
图 6  盐水液滴撞击聚丙烯平板后的最大铺展直径
图 7  GOR、STEC随料液中盐的质量分数的变化
图 8  系统单位时间内产水量、脱盐率随料液体积流量的变化
图 9  GOR、STEC随料液体积流量的变化
1 AHMAD M, WILLIAMS P Assessment of desalination technologies for high saline brine applications: discussion paper[J]. Desalination and Water Treatment, 2011, 30 (1–3): 22- 36
doi: 10.5004/dwt.2011.1374
2 马学虎, 兰忠, 王四芳, 等 海水淡化浓盐水排放对环境的影响与零排放技术研究进展[J]. 化工进展, 2011, 30 (1): 233- 242
MA Xue-hu, LAN Zhong, WANG Si-fang, et al Impact of discharges in seawater desalination on marine environment and progress of zero liquid discharge[J]. Chemical Industry and Engineering Progress, 2011, 30 (1): 233- 242
3 姜忠义, 李玉平, 陈志强, 等 煤化工废水近零排放与资源化关键技术研究与应用示范[J]. 化工进展, 2016, 35 (12): 4099- 4100
JIANG Zhong-yi, LI Yu-ping, CHEN Zhi-qiang, et al Key technologies study and application demonstration of near-zero-liquid-discharge and resource recovery of coal chemical industry wastewater[J]. Chemical Industry and Engineering Progress, 2016, 35 (12): 4099- 4100
4 李宇庆, 马楫, 钱国恩 制药废水处理技术进展[J]. 工业水处理, 2009, 29 (12): 5- 7
LI Yu-qing, MA Ji, QIAN Guo-en Progress in the treatment technology of pharmaceutical wastewater[J]. Industry Water Treatment, 2009, 29 (12): 5- 7
doi: 10.3969/j.issn.1005-829X.2009.12.002
5 余瑞霞, 王越, 王世昌 海水淡化浓盐水排放与处理技术研究概况[J]. 水处理技术, 2005, 31 (6): 1- 3
YU Rui-xia, WANG-Yue, WANG Shi-chang A review on brine disposal from desalination plants[J]. Technology of Water Treatment, 2005, 31 (6): 1- 3
doi: 10.3969/j.issn.1000-3770.2005.06.001
6 AHMAD M, WILLIAMS P Application of salinity gradient power for brines disposal and energy utilization[J]. Desalination and Water Treatment, 2009, 10 (1–3): 220- 228
doi: 10.5004/dwt.2009.924
7 RALUY G, SERRA L, UCHE J Life cycle assessment of MSF, MED and RO desalination technologies[J]. Energy, 2006, 31 (13): 2361- 2372
doi: 10.1016/j.energy.2006.02.005
8 YOUNOS T, TULOU K E Overview of desalination techniques[J]. Journal of Contemporary Water Research and Education, 2005, 132 (1): 3- 10
9 AL-RAWAJFEH A E, GLADE H, ULRICH J Scaling in multiple-effect distillers: the role of CO2 release [J]. Desalination, 2005, 182 (1–3): 209- 219
doi: 10.1016/j.desal.2005.04.013
10 于金旗, 王为民, 程方琳, 等 超滤-反渗透工艺处理热法海淡浓盐水的中试研究[J]. 水处理技术, 2018, 44 (3): 109- 113
YU Jin-qi, WANG Wei-min, CHENG Fang-lin, et al Pilot-scale study on ultrafiltration reverse osmosis technology forbrine treatment from thermal desalination process[J]. Technology of Water Treatment, 2018, 44 (3): 109- 113
11 袁俊生, 焦亮, 刘杰 利用纳滤膜软化浓海水研究[J]. 水处理技术, 2012, 38 (11): 81- 83
YUAN Jun-sheng, JIAO Liang, LIU Jie Softening of concentrated seawater by national membrane[J]. Technology of Water Treatment, 2012, 38 (11): 81- 83
doi: 10.3969/j.issn.1000-3770.2012.11.018
12 刘杰, 袁俊生, 纪志永, 等 纳滤法高浓盐水精制及传质性能[J]. 水处理技术, 2016, 42 (4): 17- 20
LIU Jie, YUAN Jun-sheng, JI Zhi-yong, et al Study on refining of high salinity solution by nanofiltration and its mass transfer performance[J]. Technology of Water Treatment, 2016, 42 (4): 17- 20
13 AL-OBAIDANI S, CURCIO E, MACEDONIO F, et al Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation[J]. Journal of Membrane Science, 2008, 323 (1): 85- 98
doi: 10.1016/j.memsci.2008.06.006
14 胡仰栋, 卢彦越, 徐冬梅, 等 反渗透海水淡化系统中膜组件的清洗策略[J]. 化工学报, 2005, 56 (3): 499- 505
HU Yang-dong, LU Yan-yue, XU Dong-mei, et al Cleaning strategy of membrane modules in reverse osmosis seawater desalination system[J]. Journal of Chemical Industry and Engineering, 2005, 56 (3): 499- 505
doi: 10.3321/j.issn:0438-1157.2005.03.023
15 郭浩, 彭昌盛, 李倩, 等 喷雾结晶法处理高浓盐水实验研究[J]. 水处理技术, 2016, 42 (1): 101- 103
GUO Hao, PENG Chang-sheng, LI Qian, et al Experimental study on atomizing crystallization method for high concentration brines disposal[J]. Technology of Water Treatment, 2016, 42 (1): 101- 103
16 李建法, 赵利鑫, 盖媛媛, 等 喷雾蒸发技术在化工浓盐水处理中的应用[J]. 当代化工, 2017, 46 (6): 1161- 1164
LI Jian-fa, ZHAO Li-xin, GAI Yuan-yuan, et al Application of spray evaporation technology in treating chemical brine[J]. Contemporary Chemical Industry, 2017, 46 (6): 1161- 1164
doi: 10.3969/j.issn.1671-0460.2017.06.048
17 张宁, 苏营营, 王新亭, 等 浓海水冷冻脱盐技术研究[J]. 海洋通报, 2009, 28 (2): 97- 102
ZHANG Ning, SU Ying-ying, WANG Xin-ting, et al Study on freezing desalinization technology of desalinated seawater[J]. Technology of Water Treatment, 2009, 28 (2): 97- 102
doi: 10.3969/j.issn.1001-6392.2009.02.014
18 NARAYAN G P, LIENHARD J H V Thermal design of humidification-dehumidification systems for affordable small-scale desalination[J]. Maney Publishing, 2012, 4 (3): 24- 34
19 NARAYAN G P, SHARQAWY M H, SUMMERS E K, et al The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (4): 1187- 1201
doi: 10.1016/j.rser.2009.11.014
20 YUAN G F, ZHANG H Mathematical modeling of a closed circulation solar desalination unit with humidification-dehumidification[J]. Desalination, 2007, 205 (1): 156- 162
21 CHANG Z, ZHENG H, YANG Y, et al Experimental investigation of a novel multi-effect solar desalination system based on humidification-dehumidification process[J]. Renewable Energy, 2014, 69 (3): 253- 259
22 李正良, 伍纲, 陈名贤, 等 叠置式太阳能加湿除湿海水淡化系统的稳态性能研究[J]. 太阳能学报, 2018, 39 (6): 1482- 1484
LI Zheng-liang, WU Gang, CHEN Ming-xian, et al Steady state performance research of superposition solar humidification dehumidification desalination system[J]. Acta Energiae Solaris Sinica, 2018, 39 (6): 1482- 1484
23 MEHRGOO M, AMIDPOUR M Constructal design of humidification-dehumidification desalination unit architecture[J]. Desalination, 2011, 271 (1–3): 62- 71
doi: 10.1016/j.desal.2010.12.011
24 ELAGOUZ S A A new process of desalination by air passing through seawater based on humidification-dehumidification process[J]. Energy, 2010, 35 (12): 5108- 5114
doi: 10.1016/j.energy.2010.08.005
25 CHEHAYEB K M, LIENHARD J H Effect of feed salinity on the performance of humidification dehumidification desalination[J]. International Journal of Thermal Sciences, 2015, 49 (9): 1837- 1847
26 ESLAMIMANESH A, HATAMIPOUR M S Economical study of a small-scale direct contact humidification-dehumidification desalination plant[J]. Desalination, 2010, 250 (1): 203- 207
doi: 10.1016/j.desal.2008.11.015
27 DUONG H C, COOPER P, NELEMANS B, et al Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level[J]. Separation and Purification Technology, 2016, 166: 55- 62
doi: 10.1016/j.seppur.2016.04.014
[1] 从硕,陈佳明,蔡景成,孙瑞松,董建华,郭飞. 加湿除湿脱盐系统的热力学分析及实验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 684-691.