Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2386-2394    DOI: 10.3785/j.issn.1008-973X.2020.12.013
土木与交通工程     
双向干线协调控制的改进数解算法
曾佳棋(),王殿海*()
浙江大学 建筑工程学院,浙江 杭州 310058
Improved numerical method for two-way arterial signal coordinate control
Jia-qi ZENG(),Dian-hai WANG*()
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1177 KB)   HTML
摘要:

针对经典数解法不能确保得到最优解的问题,提出新的改进数解算法. 明确理想信号位置的移动范围和移动方式,提出初始理想信号位置的概念;提出偏移绿信比的新定义,将信号相对于前、后方初始理想信号位置的偏移绿信比分别称为前、后投影绿信比;通过寻找绿波带宽度与前、后投影绿信比的关系,证明在理想信号移动的过程中绿波带宽度的变化次数等于干线交叉口的数量. 预先计算前、后投影绿信比,避免在移动理想信号位置时对绿时损失的重复计算. 研究结果表明,改进后的数解算法相比经典数解法,可以得到最大绿波带宽,并且在结果相同的情况下计算量更小.

关键词: 交通工程干线协调控制数解算法绿波带宽度相位差    
Abstract:

A new improved numerical method was proposed aiming at the problem that the original numerical method cannot ensure the optimal solution. First, the range and mode of the movement of the ideal signal position were defined, and the concept of the initial ideal signal position was put forward. Then, a new definition of offset green ratio was proposed. The offset green ratio relative to the front and back initial ideal signal position were called the front and back projected green ratio, respectively. Finally, by finding the relationship between the green wave bandwidth and the front/back projected green ratio, it was proved that the change times of green wave bandwidth is equal to the number of intersections during the ideal signal movement. By pre-calculating the forward and back projected green ratio, redundant calculation of the loss green ratio was avoided after each movement of the ideal signal position. The results demonstrate that, the proposed method can obtain the maximum green wave bandwidth compared with the existing numerical method, and reduce the calculation amount when the results are the same.

Key words: traffic engineering    arterial signal coordination    numerical method    green wave bandwidth    signal offset
收稿日期: 2019-10-18 出版日期: 2020-12-31
CLC:  U 491.2  
基金资助: 国家自然科学基金资助项目(61773338)
通讯作者: 王殿海     E-mail: zengjiaqi@zju.edu.cn;wangdianhai@zju.edu.cn
作者简介: 曾佳棋(1996—),男,博士生,从事交通规划研究. orcid.org/0000-0002-6967-5394. E-mail: zengjiaqi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曾佳棋
王殿海

引用本文:

曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.

Jia-qi ZENG,Dian-hai WANG. Improved numerical method for two-way arterial signal coordinate control. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2386-2394.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.013        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2386

图 1  理想信号位置布置方式
图 2  算例1干道布局
信号 Di/m 邻项差/m
S1 0 ?
S4 40 40
S3 60 20
S2 300 240
S5 320 20
S1 380 60
表 1  Di邻项差计算表
图 3  经典数解法得到的算例1理想信号布置位置
a/m b/m ba)/% dmax/m
  注:“▲”为最优解标记符号.
360 200 56 80
370 220 59 75
380 240 63 70▲
390 240 62 75
400 220 55 90
410 170 41 120
420 140 33 140
430 180 42 125
440 220 50 110
450 210 47 120
460 180 39 140
470 150 32 160
480 180 38 150
490 230 47 130
500 280 56 110
510 330 65 90
520 360▲ 69▲ 80
530 350 66 90
540 340 63 100
550 330 60 110
表 2  算例1各理想信号间距与匹配程度指标对应关系
信号
编号
最近理想
信号编号
相位
差/%
实际信号所处方位 λ /% λloss /% λe /% B /%
S1 0 45 2.63 42.37 26.85/2+
31.58/2=
29.21
S2 0 50 18.42 31.58
S3 50 60 18.42 41.58
S4 0 40 13.15 26.85
S5 0 55 13.15 41.85
表 3  算例1中a=380 m时的相位差计算
图 4  偏移绿信比示意图
图 5  偏移绿信比与投影绿信比图示
信号 Λi λi ${ { {\lambda _i} } }/{2} + {\varLambda _i}$ ${ { {\lambda _i} } }/{2} - {\varLambda _i}$
${S'_2}$ $\dfrac{{{{D'}_2}}}{{2a}} - \dfrac{1}{2}$ ${\lambda '_2} $ ${\lambda '_2}/ 2 + {\varLambda _2}$ ${\lambda '_2}/ 2 - {\varLambda _2}$
${S'_3}$ $\dfrac{{{{D'}_3}}}{{2a}} - \dfrac{1}{2}$ ${\lambda '_3} $ ${\lambda '_3}/ 2 + {\varLambda _3}$ ${\lambda '_3}/ 2 - {\varLambda _3}$
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
${S'_n}$ $\dfrac{{{{D'}_n}}}{{2a}} - \dfrac{1}{2}$ ${\lambda '_n} $ ${\lambda '_n}/ 2+ {\varLambda _n}$ ${\lambda '_n}/ 2 - {\varLambda _n}$
${S'_1}$ $\dfrac{{{{D'}_1}}}{{2a}}$ ${\lambda '_1} $ ${\lambda '_1}/ 2 + {\varLambda _1}$ ${\lambda '_1}/ 2 - {\varLambda _1}$
${S'_2}$ $\dfrac{{{{D'}_2}}}{{2a}}$ ${\lambda '_2} $ ${\lambda '_2}/ 2 + {\varLambda _2}$ ${\lambda '_2}/ 2 - {\varLambda _2}$
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
${S'_n}$ $\dfrac{{{{D'}_n}}}{{2a}}$ ${\lambda '_n} $ ${\lambda '_n}/ 2 + {\varLambda _n}$ ${\lambda '_n}/ 2 - {\varLambda _n}$
表 4  改进数解法的绿波带宽度计算表
a/m B/% a/m B/% a/m B/%
  注:“▲”为最优解标记符号.
360 7.78 430 13.43 500 18.00
370 11.08 440 14.77 510 16.28
380 14.21 450 11.95 520 14.62
390 17.18 460 9.89 530 13.02
400 20.00 470 13.83 540 11.48
410 20.42▲ 480 16.66 550 10.00
420 14.28 490 18.11
表 5  算例2各理想信号间距与绿波带宽度对应关系
信号 Λi λi ${ { {\lambda _i} } }/{2} + {\varLambda _i}$ ${ { {\lambda _i} } }/{2} - {\varLambda _i}$
S5 ?29.27 55 ?1.77 56.77
S2 ?17.08 30 ?2.08 32.08
S4 ?9.76 30 5.25 24.76
S3 ?3.66 60 26.34 33.66
S1 0 45 22.50 22.50
S5 20.73 55 48.23 6.77
S2 32.93 30 47.93 ?17.93
S4 40.25 30 55.25 ?25.25
S3 46.34 60 76.34 ?16.34
表 6  算例2中a=410 m时改进数解法绿波带宽计算表
理想信号位置 $\min \;\left\{ {{ { {\lambda _i} } }/{2} + {\varLambda _i} } \right\}/{\text{%}}$ $\min\; \left\{ { { { {\lambda _i} } }/{2} - {\varLambda _i} } \right\}/{\text{%} }$ B /%
  注:“▲”为各方法最优解标记符号
l1,cr<ll5,cr ?2.08 22.5 20.42▲
l5,cr<ll2,cr ?2.08 6.77 4.69
l2,cr<ll4,cr 5.24 ?17.92 ?12.68
l4,cr<ll3,cr 22.5 ?25.24 ?2.74
l3,cr<ll1,cr+a 22.5 ?25.24 ?2.74
表 7  算例2中a=410 m时各理想信号位置下的绿波带宽
图 6  改进数解法得到的算例2理想信号布置位置
图 7  算例2理想信号位置与绿波控制时距图
信号编号 最近理想信号编号 相位差/%
S1 0
S2 0
S3 50
S4 0
S5 0
表 8  算例2中a=410 m时的相位差计算
a/m b/m ba?1/% dmax/m B/%
  注: “▲”为各方法最优解标记符号.
340 140 29.4 100▲ 33.1
350 130 31.4 110 33.6▲
360 90 37.5 135 30.0
370 100 36.5 135 24.3
380 110 35.5 135 22.0
390 110 35.9 140 21.6
400 120 35.0 140 22.5
410 130 34.1 140 23.4
420 140 33.3 140 24.2
430 130 34.9 150 24.9
440 120 29.4 100▲ 23.2
450 110 37.8 170 22.5
460 120 37.0 170 20.9
470 150 34.0 160 22.7
480 180 31.2 150 23.3
490 210 28.6 140 23.9
500 220▲ 28.0▲ 140 24.5
510 200 30.4 155 25.1
520 170 33.7 175 25.6
530 140 36.8 195 24.8
540 150 36.1 195 24.2
表 9  算例3各理想信号间距与匹配程度指标对应关系
a /m b /m ba?1 /% dmax /m B/%
  注:“▲”为各方法最优解标记符号.
460 120 26.1 170 20.9
470 150 31.9 160 22.7
480 180 37.5 150 23.3
490 210 42.9 140▲ 23.9
500 220 44.0▲ 140▲ 24.5
510 200 39.2 155 25.1
520 170 32.7 175 25.6
530 140 26.4 195 24.8
540 150 27.8 195 24.2
550 190 34.5 180 24.8
560 210 37.5 175 27.5
570 220 38.6 175 27.9▲
580 190 32.8 195 26.5
590 160 27.1 215 26.2
600 150 25.0 225 25.0
610 140 23.0 235 22.3
620 130 21.0 245 20.5
630 160 25.4 235 22.7
640 190 29.7 225 24.4
650 220 33.8 215 24.0
660 250▲ 37.9 205 23.7
表 10  算例4各理想信号间距与匹配程度指标对应关系
n T1n T2n T3n T4n T4n)/T1n
6 745 1985 2481 135 18.1%
8 1313 10497 3281 213 16.2%
10 2041 52225 4081 307 15.0%
12 2929 249857 4881 417 14.2%
表 11  不同n下各方法的运算次数
1 杨佩昆, 吴兵. 交通管理与控制[M]. 北京: 人民交通出版社, 2003: 122-131.
2 MORGAN J T, LITTLE J D C Synchronizing traffic signals for maximal bandwidth[J]. Operations Research, 1964, 12 (6): 896- 912
doi: 10.1287/opre.12.6.896
3 LITTLE J D C, KELSON M D, GARTNER N H MAXBAND: a versatile program for setting signals on arteries and triangular networks[J]. Transportation Researeh Record, 1981, 795: 40- 46
4 GARTNER N H, ASSMAN S F, LASAGA F, et al A multi-band approach to arterial traffic signal optimization[J]. Transportation Research Part B: Methodological, 1991, 25 (1): 55- 74
5 中国公路学会《交通工程手册》编委会. 交通工程手册[M]. 北京: 人民交通出版社, 1998: 1192-1208.
6 陈垚, 刘莎莎, 李玲利, 等 基于Synchro的相位差优化方法研究——以长安街交叉口为例[J]. 交通信息与安全, 2012, 30 (6): 115- 117
CHEN Yao, LIU Sha-sha, LI Ling-li, et al Synchro-based offset optimization method: a case study of intersection in Chang’an Avenue[J]. Journal of Transport Information and Safety, 2012, 30 (6): 115- 117
doi: 10.3963/j.issn1674-4861.2012.06.024
7 裴玉龙, 孙明哲, 董向辉 城市主干路交叉口信号协调控制系统设计研究[J]. 交通运输工程与信息学报, 2004, (2): 41- 46
PEI Yu-long, SUN Ming-zhe, DONG Xiang-hui Research on the design of signal coordination control system in intersections of urban main roads[J]. Journal of Transportation Engineering and Information, 2004, (2): 41- 46
doi: 10.3969/j.issn.1672-4747.2004.02.005
8 邹成伟, 李志海, 于冬意 哈尔滨市红旗大街线控制系统设计[J]. 应用科技, 2002, (5): 30- 33
ZOU Cheng-wei, LI Zhi-hai, YU Dong-yi Design of linear control system in Hongqi Street in Harbin[J]. Applied Science and Technology, 2002, (5): 30- 33
doi: 10.3969/j.issn.1009-671X.2002.05.011
9 栗红强. 城市交通控制信号配时参数优化方法研究[D]. 长春: 吉林大学, 2004.
LI Hong-qiang. Study on the optimization methods of signal timing parameters of urban traffic control [D]. Changchun: Jilin University, 2004.
10 卢凯, 徐建闽, 叶瑞敏 经典干道协调控制信号配时数解算法的改进[J]. 公路交通科技, 2009, 26 (1): 120- 124
LU Kai, XU Jian-min, YE Rui-min Improvement of classical algebraic method of signal timing for arterial road coordinate control[J]. Journal of Highway and Transportation Research and Development, 2009, 26 (1): 120- 124
doi: 10.3969/j.issn.1002-0268.2009.01.022
11 卢凯, 刘永洋, 吴焕, 等 非对称通行条件下的双向绿波协调控制数解算法[J]. 中国公路学报, 2015, 28 (6): 95- 103
LU Kai, LIU Yong-yang, WU Huan, et al Algebraic method of bidirectional green wave coordinated control under asymmetric traffic conditions[J]. China Journal of Highway and Transport, 2015, 28 (6): 95- 103
doi: 10.3969/j.issn.1001-7372.2015.06.013
12 王殿海, 杨希锐, 宋现敏 交通信号干线协调控制经典数值计算法的改进[J]. 吉林大学学报: 工学版, 2011, 41 (1): 29- 34
WANG Dian-hai, YANG Xi-rui, SONG Xian-min Improvement of classical numerical method for arterial road signal coordinate control[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41 (1): 29- 34
13 荆彬彬, 鄢小文, 吴焕, 等 基于双向最大绿波带宽的通用干道协调控制数解算法[J]. 交通运输系统工程与信息, 2017, 17 (2): 76- 82
JING Bin-bin, YAN Xiao-wen, WU Huan, et al General algebraic algorithm for arterial coordination control based on maximum bidirectional progression bandwidth[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17 (2): 76- 82
14 叶晓飞, 羊钊, 包哲宁, 等 考虑行车延误的干线协调控制信号配时数解算法[J]. 长安大学学报: 自然科学版, 2015, 35 (Suppl.1): 115- 119
YE Xiao-fei, YANG Zhao, BAO Zhe-ning, et al Improvement of classical algebraic method of signal timing for arterial road coordinate control considering traffic delay[J]. Journal of Chang'an University: Natural Science Edition, 2015, 35 (Suppl.1): 115- 119
15 李小会, 闫冬 进口单独放行条件的双向绿波数解法改进研究[J]. 交通科技与经济, 2019, 21 (6): 9- 18
LI Xiao-hui, YAN Dong Research on an improved algebraic method of two-way green wave based on one-phase-one-approach[J]. Technology and Economy in Areas of Communications, 2019, 21 (6): 9- 18
[1] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[2] 卢凯,田鑫,林观荣,邓兴栋. 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报(工学版), 2020, 54(5): 921-930.
[3] 张思佳,贾顺平,毛保华,麻存瑞,张桐. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 292-298.
[4] 徐文浩,邱展,喻伯平,王福新. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.
[5] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[6] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.
[7] 刘美岐, 沈莉潇, 金盛. 考虑右转信号控制的共用车道通行能力模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1347-1354.
[8] 徐程, 曲昭伟, 王殿海, 金盛. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1331-1338.
[9] 王韩麒, 陈红, 冯微, 刘玮蔚. 基于CPT的异质通勤者多维出行决策模型[J]. 浙江大学学报(工学版), 2017, 51(2): 297-303.
[10] 许文媛, 孟濬, 赵夕朦. 基于高速摄像机的动态血压非接触获取[J]. 浙江大学学报(工学版), 2017, 51(10): 2077-2083.
[11] 于德新, 田秀娟, 杨兆升, 周熙阳, 程泽阳. 改进的干线协调信号控制优化模型[J]. 浙江大学学报(工学版), 2017, 51(10): 2019-2029.
[12] 周旦, 马晓龙, 金盛, 王殿海. 混合非机动车交通流超车次率影响因素模型[J]. 浙江大学学报(工学版), 2015, 49(9): 1672-1678.
[13] 孙文财, 杨志发, 李世武, 徐艺, 郭梦竹, 魏学新. 面向驾驶员注视区域划分的DBSCAN-MMC方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1455-1461.
[14] 李世武, 徐艺, 王琳虹, 孙文财, 别一鸣. 基于万有引力搜索算法的低排放自适应配时[J]. 浙江大学学报(工学版), 2015, 49(7): 1313-1318.
[15] 王剑,胡锡幸,郭吉丰. 二自由度超声波电机位姿检测与控制[J]. 浙江大学学报(工学版), 2014, 48(5): 871-876.