土木与交通工程 |
|
|
|
|
基于广义Clapeyron方程的含盐土冻结特征曲线模型 |
孟祥传1,2( ),周家作2,*( ),韦昌富1,2,陈盼2,张坤3,沈正艳4 |
1. 桂林理工大学 土木与建筑工程学院,广西 桂林 541004 2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071 3. 甘肃省交通科学研究院有限公司 甘肃省桥梁隧道健康监测与安全评估技术重点实验室,甘肃 兰州 730030 4. 中国矿业大学 力学与建筑工程学院,北京 100083 |
|
Freezing characteristic curve model of saline soil based on generalized Clapeyron equation |
Xiang-chuan MENG1,2( ),Jia-zuo ZHOU2,*( ),Chang-fu WEI1,2,Pan CHEN2,Kun ZHANG3,Zheng-yan SHEN4 |
1. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, China 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China 3. Key Laboratory of Bridge and Tunnel Health Monitoring and Safety Assessment Technology of Gansu Province, Gansu Provincial Transportation Research Institute Co. Ltd, Lanzhou 730030, China 4. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China |
引用本文:
孟祥传,周家作,韦昌富,陈盼,张坤,沈正艳. 基于广义Clapeyron方程的含盐土冻结特征曲线模型[J]. 浙江大学学报(工学版), 2020, 54(12): 2377-2385.
Xiang-chuan MENG,Jia-zuo ZHOU,Chang-fu WEI,Pan CHEN,Kun ZHANG,Zheng-yan SHEN. Freezing characteristic curve model of saline soil based on generalized Clapeyron equation. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2377-2385.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.012
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2377
|
1 |
马巍, 王大雁 中国冻土力学研究50 a回顾与展望[J]. 岩土工程学报, 2012, 34 (4): 625- 640 MA Wei, WANG Da-yan Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (4): 625- 640
|
2 |
DILLON H B, ANDERSLAND O B Predicting unfrozen water contents in frozen soils[J]. Canadian Geotechnical Journal, 1966, 3 (2): 53- 60
doi: 10.1139/t66-007
|
3 |
PATTERSON D E, SMITH M W The measurement of unfrozen water content by time domain reflectometry: results from laboratory tests[J]. Canadian Geotechnical Journal, 1981, 18 (1): 131- 144
doi: 10.1139/t81-012
|
4 |
TSYTOVICH N A. The mechanics of frozen ground [M]. New York: McGraw-Hill, 1975: 43-45.
|
5 |
徐敩祖, J L. 奥利奋特, A R. 泰斯 土水势、未冻水含量和温度[J]. 冰川冻土, 1985, 7 (1): 1- 11 XU Xiao-zu, OLIPHANT J L, TICE A R Soil-water potential and unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7 (1): 1- 11
|
6 |
MICHALOWSHI R L A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology, 1993, 22 (1): 47- 63
doi: 10.1016/0165-232X(93)90045-A
|
7 |
KOZLOWSKI T A semi-empirical model for phase composition of water in clay-water systems[J]. Cold Regions Science and Technology, 2007, 49 (3): 226- 236
doi: 10.1016/j.coldregions.2007.03.013
|
8 |
BLACK P B, TICE A R Comparison of soil freezing curve and soil water curve data for Windsor sandy loam[J]. Water Resources Research, 1989, 25 (10): 2205- 2210
doi: 10.1029/WR025i010p02205
|
9 |
TIAN H H, WEI C F, WEI H Z, et al Freezing and thawing characteristics of frozen soils: bound water content and hysteresis phenomenon[J]. Cold Regions Science and Technology, 2014, 103 (1): 74- 81
|
10 |
YOSHIKAWA K, OVERDUIN P P Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005, 42 (3): 250- 256
doi: 10.1016/j.coldregions.2005.03.001
|
11 |
SWENSON J, BERGMAN R, LONGEVILLE S Experimental support for a dynamic transition of confined water[J]. Journal of Non-Crystalline Solids, 2002, 307-310: 573- 578
doi: 10.1016/S0022-3093(02)01488-6
|
12 |
KOZLOWSKI T A comprehensive method of determining the soil unfrozen water curves: 1. application of the term of convolution[J]. Cold Regions Science and Technology, 2003, 36: 71- 79
doi: 10.1016/S0165-232X(03)00007-7
|
13 |
KOZLOWSKI T A comprehensive method of determining the soil unfrozen water curves: 2. stages of the phase change process in frozen soil-water system[J]. Cold Regions Science and Technology, 2003, 36: 81- 92
doi: 10.1016/S0165-232X(03)00006-5
|
14 |
FABBRI A, FEN-CHONG T, COUSSY O Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials[J]. Cold Regions Science and Technology, 2006, 44: 52- 66
doi: 10.1016/j.coldregions.2005.07.001
|
15 |
LOCH J P G Thermodynamic equilibrium between ice and water in porous media[J]. Soil Science, 1978, 126 (2): 77- 80
doi: 10.1097/00010694-197808000-00002
|
16 |
WEI C F A theoretical framework for modeling the chemomechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13 (9): 1- 21
|
17 |
ZHOU J Z, WEI C F, LAI Y M, et al Application of the generalized clapeyron equation to freezing point depression and unfrozen water content[J]. Water Resources Research, 2018, 54 (11): 9412- 9431
doi: 10.1029/2018WR023221
|
18 |
SPEIGHT J G. Lange’s handbook of chemistry [M]. 16th ed. New York: McGraw-Hill Professional Publishing, 2005.
|
19 |
BROOKS R H, COREY A T. Hydraulic properties of porous media [M]. Fort Collins: Colorado State University, 1964.
|
20 |
马田田, 韦昌富, 周家作, 等 土体冻结特征曲线和持水特性[J]. 岩土工程学报, 2015, 37 (Suppl. 1): 172- 177 MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, et al Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (Suppl. 1): 172- 177
|
21 |
周家作, 谭龙, 韦昌富, 等 土的冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36 (3): 777- 785 ZHOU Jia-zuo, TAN Long, WEI Chang-fu, et al Experimental study on freezing temperature and subcooling temperature of soil[J]. Rock and soil mechanics, 2015, 36 (3): 777- 785
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|