| 计算机技术、控制工程 |
|
|
|
|
| 基于分阶段语义感知的事件抽取大语言模型框架 |
李延松1( ),陈宁2,刘锋光2,陈盼2,黄晓峰1,葛慧丽2,*( ) |
1. 杭州电子科技大学 通信工程学院,浙江 杭州 310018 2. 浙江省科技项目管理服务中心,浙江 杭州 310006 |
|
| Large language model framework for event extraction based on staged semantic perception |
Yansong LI1( ),Ning CHEN2,Fengguang LIU2,Pan CHEN2,Xiaofeng HUANG1,Huili GE2,*( ) |
1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China 2. Department of Science and Technology of Zhejiang Province, Hangzhou 310006, China |
引用本文:
李延松,陈宁,刘锋光,陈盼,黄晓峰,葛慧丽. 基于分阶段语义感知的事件抽取大语言模型框架[J]. 浙江大学学报(工学版), 2026, 60(3): 527-535.
Yansong LI,Ning CHEN,Fengguang LIU,Pan CHEN,Xiaofeng HUANG,Huili GE. Large language model framework for event extraction based on staged semantic perception. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 527-535.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.008
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/527
|
| 13 |
NGUYEN T H, GRISHMAN R. Event detection and domain adaptation with convolutional neural networks [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing: ACL, 2015: 365–371.
|
| 14 |
YAO L, MAO C, LUO Y. Graph convolutional networks for text classification [C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 7370-7377.
|
| 15 |
ZHU M, ZENG K, JIBINGWU J, et al. LC4EE: LLMs as good corrector for event extraction [C]//Proceedings of the Findings of the Association for Computational Linguistics. St. Julian's, Malta: ACL, 2024: 12028–12038.
|
| 16 |
TSUJIMURA T, YAMADA K, IDA R, et al Contextualized medication event extraction with striding NER and multi-turn QA[J]. Journal of Biomedical Informatics, 2023, 144: 104416
doi: 10.1016/j.jbi.2023.104416
|
| 17 |
LU Y, LIU Q, DAI D, et al. Unified structure generation for universal information extraction [C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 5755–5772.
|
| 18 |
WANG X, ZHOU W, ZU C, et al. Instructuie: multi-task instruction tuning for unified information extraction [EB/OL]. (2023-04-17) [2024-12-20]. https://arxiv.org/abs/2304.08085.
|
| 19 |
GAO J, ZHAO H, YU C, et al. Exploring the feasibility of chatgpt for event extraction [EB/OL]. (2023-03-09) [2024-12-20]. https://arxiv.org/abs/2303.03836.
|
| 20 |
BONISOLI G, VILARES D, ROLLO F, et al Document-level event extraction from Italian crime news using minimal data[J]. Knowledge-Based Systems, 2025, 317: 113386
doi: 10.1016/j.knosys.2025.113386
|
| 21 |
LI Z, ZENG Y, ZUO Y, et al. KnowCoder: coding structured knowledge into LLMs for universal information extraction [C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2024: 8758–8779.
|
| 22 |
LOU J, LU Y, DAI D, et al. Universal information extraction as unified semantic matching [C]// Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI, 2023: 13318–13326.
|
| 23 |
HU E J, SHEN Y, WALLIS P, et al. Lora: low-rank adaptation of large language models [EB/OL]. [2025-02-25]. https://arxiv.org/abs/2106.09685.
|
| 24 |
LIU S, LI Y, ZHANG F, et al. Event detection without triggers [C]//Proceedings of the 2019 Conference of the North. Minneapolis: ACL, 2019: 735–744.
|
| 25 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Minneapolis: ACL, 2019: 4171–4186.
|
| 1 |
AHN D. The stages of event extraction [C]//Proceedings of the Workshop on Annotating and Reasoning about Time and Events. Sydney: ACL, 2006: 1–8.
|
| 2 |
DODDINGTON G R, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ACE) program: tasks, data, and evaluation [C]//Proceedings of the International Conference on Language Resources and Evaluation. Lisbon: ELRA, 2004: 837–840.
|
| 3 |
ZHANG W, ZHAO X, ZHAO L, et al. DRL4IR: 2nd workshop on deep reinforcement learning for information retrieval [C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S. l. ]: ACM, 2021: 2681–2684.
|
| 4 |
BOSSELUT A, LE BRAS R, CHOI Y. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering [C]// Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI, 2021: 4923–4931.
|
| 5 |
CAO Q, TRIVEDI H, BALASUBRAMANIAN A, et al. DeFormer: decomposing pre-trained Transformers for faster question answering [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: ACL, 2020: 4487–4497.
|
| 6 |
蒋倩, 唐昊冶, 涂勇辉, 等 大型仪器设备分层化与特征化运行管理探索[J]. 实验技术与管理, 2024, 41 (10): 266- 270 JIANG Qian, TANG Haoye, TU Yonghui, et al Exploration of hierarchical and characteristic operation modes for large instruments and equipment[J]. Experimental Technology and Management, 2024, 41 (10): 266- 270
|
| 7 |
张可, 万红, 张肖笑, 等 省属高校分析测试中心大型仪器设备开放运行管理探讨[J]. 实验与分析, 2024, (4): 87- 90 ZHANG Ke, WAN Hong, ZHANG Xiaoxiao, et al Discussion on the open operation management of large instruments in the analysis and testing center of provincial universities[J]. Labor Praxis, 2024, (4): 87- 90
doi: 10.20175/j.syyfx.20240414
|
| 8 |
CHEN Y, XU L, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing: ACL, 2015: 167–176.
|
| 9 |
SUBBURATHINAM A, LU D, JI H, et al. Cross-lingual structure transfer for relation and event extraction [C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: ACL, 2019: 313–325.
|
| 10 |
ZHANG J, QIN Y, ZHANG Y, et al. Extracting entities and events as a single task using a transition-based neural model [C]// 28th International Joint Conference on Artificial Intelligence. Macau: MKP, 2019: 5422–5428.
|
| 11 |
LI Q, LI J, SHENG J, et al A survey on deep learning event extraction: Approaches and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35 (5): 6301- 6321
|
| 12 |
项威, 王邦 中文事件抽取研究综述[J]. 计算机技术与发展, 2020, 30 (2): 1- 6 XIANG Wei, WANG Bang Survey of chinese event extraction research[J]. Computer Technology and Development, 2020, 30 (2): 1- 6
doi: 10.3778/j.issn.1002-8331.2203-0453
|
| 26 |
DU X, CARDIE C. Event extraction by answering (almost) natural questions [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Punta Cana: ACL, 2020: 671–683.
|
| 27 |
SHIRI F, MOGHIMIFAR F, HAFFARI R, et al. Decompose, enrich, and extract! schema-aware event extraction using LLMs [C]//27th International Conference on Information Fusion. Florence: IEEE, 2024: 1–8.
|
| 28 |
WANG S, HUANG L. Targeted augmentation for low-resource event extraction [C]// Findings of the Association for Computational Linguistics: NAACL 2024. Mexico City: ACL, 2024: 4414–4428.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|