计算机技术 |
|
|
|
|
大模型知识引导的复合多注意力文档级关系抽取方法 |
竹志超1( ),李建强1,齐宏智1,赵青1,*( ),高齐2,李思颖2,蔡嘉怡2,沈金炎2 |
1. 北京工业大学 计算机学院,北京 100124 2. 北京工业大学 北京-都柏林国际学院,北京 100124 |
|
Large model knowledge-guided composite multi-attention method for document-level relation extraction |
Zhichao ZHU1( ),Jianqiang LI1,Hongzhi QI1,Qing ZHAO1,*( ),Qi GAO2,Siying LI2,Jiayi CAI2,Jinyan SHEN2 |
1. College of Computer Science, Beijing University of Technology, Beijing 100124, China 2. Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China |
引用本文:
竹志超,李建强,齐宏智,赵青,高齐,李思颖,蔡嘉怡,沈金炎. 大模型知识引导的复合多注意力文档级关系抽取方法[J]. 浙江大学学报(工学版), 2025, 59(9): 1793-1802.
Zhichao ZHU,Jianqiang LI,Hongzhi QI,Qing ZHAO,Qi GAO,Siying LI,Jiayi CAI,Jinyan SHEN. Large model knowledge-guided composite multi-attention method for document-level relation extraction. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1793-1802.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.003
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1793
|
1 |
ZHAO Q, XU D, LI J, et al Knowledge guided distance supervision for biomedical relation extraction in Chinese electronic medical records[J]. Expert Systems with Applications, 2022, 204: 117606
doi: 10.1016/j.eswa.2022.117606
|
2 |
HEIST N, PAULHEIM H. Language-agnostic relation extraction from wikipedia abstracts [C]// International Semantic Web Conference. Vienna: Springer, 2017: 383–399.
|
3 |
ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network [C]// International Conference on Computational Linguistics. Dublin: ACL, 2014: 2335–2344.
|
4 |
ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction [C]// Conference on Empirical Methods in Natural Language Processing. Brussels: ACL, 2018: 2205–2215.
|
5 |
YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset [C]// Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019: 764–777.
|
6 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2016-09-09). https://arxiv.org/abs/1609.02907.
|
7 |
WANG D, HU W, CAO E, et al. Global-to-local neural networks for document-level relation extraction [C]// Conference on Empirical Methods in Natural Language Processing. [S.l.]: ACL, 2020: 3711–3721.
|
8 |
LIU H, KANG Z, ZHANG L, et al. Document-level relation extraction with cross-sentence reasoning graph [C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Osaka: Springer, 2023: 316–328.
|
9 |
ZHOU H, XU Y, YAO W, et al. Global context-enhanced graph convolutional networks for document-level relation extraction [C]// International Conference on Computational Linguistics. Barcelona: ICCL, 2020: 5259–5270.
|
10 |
VRANDEČIĆ D, KRÖTZSCH M Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57 (10): 78- 85
doi: 10.1145/2629489
|
11 |
AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data [C]// International Semantic Web Conference. Busan: Springer, 2007: 722–735.
|
12 |
BASTOS A, NADGERI A, SINGH K, et al. RECON: relation extraction using knowledge graph context in a graph neural network [C]// International World Wide Web Conference. Ljubljana: ACM, 2021: 1673–1685.
|
13 |
FERNÀNDEZ-CAÑELLAS D, MARCO RIMMEK J, ESPADALER J, et al. Enhancing online knowledge graph population with semantic knowledge [C]// International Semantic Web Conference. Athens: Springer, 2020: 183–200.
|
14 |
PAN J, ZHANG M, SINGH K, et al. Entity enabled relation linking [C]// International Semantic Web Conference. Auckland: Springer, 2019: 523–538.
|
15 |
WANG X, WANG Z, SUN W, et al. Enhancing document-level relation extraction by entity knowledge injection [C]// International Semantic Web Conference. [S.l.]: Springer, 2022: 39–56.
|
16 |
WANG H, QIN K, LU G, et al Document-level relation extraction using evidence reasoning on RST-GRAPH[J]. Knowledge-Based Systems, 2021, 228: 107274
doi: 10.1016/j.knosys.2021.107274
|
17 |
SOUSA D, COUTO F M Biomedical relation extraction with knowledge graph-based recommendations[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (8): 4207- 4217
doi: 10.1109/JBHI.2022.3173558
|
18 |
CHEN J, HU B, PENG W, et al Biomedical relation extraction via knowledge-enhanced reading comprehension[J]. BMC Bioinformatics, 2022, 23 (1): 20
doi: 10.1186/s12859-021-04534-5
|
19 |
ZHANG B, LI L, SONG D, et al Biomedical event causal relation extraction based on a knowledge-guided hierarchical graph network[J]. Soft Computing, 2023, 27 (22): 17369- 17386
doi: 10.1007/s00500-023-08882-7
|
20 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [EB/OL]. (2018-10-11). https://arxiv.org/abs/1810.04805v2.
|
21 |
WANG H, FOCKE C, SYLVESTER R, et al. Fine-tune BERT for DocRED with two-step process [EB/OL]. (2019-09-26). https://arxiv.org/abs/1909.11898v1.
|
22 |
ZHOU W, HUANG K, MA T, et al. Document-level relation extraction with adaptive thresholding and localized context pooling [C]// AAAI Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2021: 14612–14620.
|
23 |
XU B, WANG Q, LYU Y, et al. Entity structure within and throughout: modeling mention dependencies for document-level relation extraction [C]// AAAI Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2021: 14149–14157.
|
24 |
QUIRK C, POON H. Distant supervision for relation extraction beyond the sentence boundary [C]// Conference of the European Chapter of the Association for Computational Linguistics. Valencia: ACL, 2017: 1171–1182.
|
25 |
PENG N, POON H, QUIRK C, et al Cross-sentence N-ary relation extraction with graph LSTMs[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 101- 115
doi: 10.1162/tacl_a_00049
|
26 |
VERGA P, STRUBELL E, MCCALLUM A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction [C]// Conference of the North American Chapter of the Association for Computational Linguistics. New Orleans: ACL, 2018: 872–884.
|
27 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// International Conference on Neural Information Processing Systems. Long Beach: NeurIPS Foundation, 2017: 6000–6010.
|
28 |
NAN G, GUO Z, SEKULIC I, et al. Reasoning with latent structure refinement for document-level relation extraction [C]// Annual Meeting of the Association for Computational Linguistics. [S.l.]: ACL, 2020: 1546–1557.
|
29 |
ZENG S, XU R, CHANG B, et al. Double graph based reasoning for document-level relation extraction [C]// Conference on Empirical Methods in Natural Language Processing. [S.l.]: ACL, 2020: 1630–1640.
|
30 |
LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach [EB/OL]. (2019-07-26). https://arxiv.org/abs/1907.11692.
|
31 |
ZENG A, XU B, WANG B, et al. ChatGLM: a family of large language models from GLM-130B to GLM-4 all tools. (2024-07-30). https://arxiv.org/abs/2406.12793.
|
32 |
OUYANG L, WU J, XU J, et al. Training language models to follow instructions with human feedback [C]// International Conference on Neural Information Processing Systems. New Orleans: NeurIPS Foundation, 2022: 27730–27744.
|
33 |
DUBEY A, JAUHR A, PANDEY A, et al. The Llama 3 herd of models [EB/OL]. (2024-07-31). https://arxiv.org/abs/2407.21783.
|
34 |
HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models [EB/OL]. (2021-10-16). https://arxiv.org/abs/2106.09685.
|
35 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2017-10-30). https://arxiv.org/abs/1710.10903.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|