计算机技术、控制工程、通信技术 |
|
|
|
|
基于异构图表征的源代码漏洞检测方法 |
张学军1( ),梁书滨1,白万荣2,张奉鹤1,黄海燕1,郭梅凤1,陈卓1 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 2. 国网甘肃省电力公司 电力科学研究院,甘肃 兰州 730070 |
|
Source code vulnerability detection method based on heterogeneous graph representation |
Xuejun ZHANG1( ),Shubin LIANG1,Wanrong BAI2,Fenghe ZHANG1,Haiyan HUANG1,Meifeng GUO1,Zhuo CHEN1 |
1. College of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. Electric Power Research Institute, State Grid Gansu Electric Power Company, Lanzhou 730070, China |
引用本文:
张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
Xuejun ZHANG,Shubin LIANG,Wanrong BAI,Fenghe ZHANG,Haiyan HUANG,Meifeng GUO,Zhuo CHEN. Source code vulnerability detection method based on heterogeneous graph representation. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1644-1652.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1644
|
18 |
程靖云, 王布宏, 罗鹏 基于图表示和MHGAT的代码漏洞静态检测方法[J]. 系统工程与电子技术, 2023, 45 (5): 1535- 1543 CHENG Jingyun, WANG Buhong, LUO Peng Code vulnerability static detection method based on graph representation and MHGAT[J]. Journal of Systems Engineering and Electronics, 2023, 45 (5): 1535- 1543
|
19 |
MARCELO A, FRANCISCO C, FRANCISCO B. An user configurable clang static analyzer taint checker [C] //Proceedings of the 35th International Conference of the Chilean Computer Science Society. Valparaíso: IEEE, 2016: 10-14.
|
20 |
YAN Y T, PAN Z L, YU L, et al. Research on the influencing factors of LLVM IR optimization effect [C] //Proceedings of the 3rd International Conference on Information Technology, Big Data and Artificial Intelligence. Chongqing: IEEE 2023: 756-763.
|
21 |
PEELER H, LI S, SLOSS A N, et al. Optimizing LLVM pass sequences with shackleton: a linear genetic programming framework [C] //Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion. Boston: ACM, 2022: 578-581.
|
22 |
MIRSKY Y, MACON G, BROWN M, et al. VulChecker: graph-based vulnerability localization in source code [C] //Proceedings of the 32nd Usenix Security Symposium. Anaheim: ACM, 2023: 6557-6574.
|
23 |
GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations: an overview of interpretability of machine learning [C] //Proceedings of the 5th International Conference on Data Science and Advanced Analytics. Turin: IEEE, 2018: 80-89.
|
24 |
CHAKRABORTY S, KRISHNA R, DING Y, et al Deep learning based vulnerability detection: are we there yet?[J]. IEEE Transactions on Software Engineering, 2020, 9 (48): 3280- 3296
|
25 |
张学军, 张奉鹤, 盖继扬, 等 mVulSniffer: 一种多类型源代码漏洞检测方法[J]. 通信学报, 2023, 44 (9): 149- 160 ZHANG Xuejun, ZHANG Fenghe, GAI Jiyang, et al mVulSniffer: a multi-type source code vulnerability sniffer method[J]. Journal on Communications, 2023, 44 (9): 149- 160
|
26 |
YANG G A review of machine learning-based zero-day attack detection: challenges and future directions[J]. The International Journal for the Computer and Telecommunications Industry, 2023, (198): 175- 185
|
27 |
ROMERA P B, TORR P. An embarrassingly simple approach to zero-shot learning [C] //Proceedings of the 2020 Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 100-109.
|
1 |
田笑, 常继友, 张弛, 等 开源软件缺陷预测方法综述[J]. 计算机研究与发展, 2023, 60 (7): 1467- 1488 TIAN Xiao, CHANG Jiyou, ZHANG Chi, et al Survey of open-source software defect prediction method[J]. Journal of Computer Research and Development, 2023, 60 (7): 1467- 1488
|
2 |
ZHANG X W, ZHOU Y, TAN S H, et al. Efficient pattern-based static analysis approach via regular-expression rules [C]//Proceedings of the 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering. Taipa: IEEE, 2023: 132-143.
|
3 |
CHEN D, ZHANG Y D, WEI W, et al Efficient vulnerability detection based on an optimized rule checking static analysis technique[J]. Frontiers of Information Technology and Electronic Engineering, 2017, 18 (3): 332- 345
doi: 10.1631/FITEE.1500379
|
4 |
苏小红, 郑伟宁, 蒋远, 等 基于学习的源代码漏洞检测研究与进展[J]. 计算机学报, 2024, 47 (2): 337- 374 SU Xiaohong ZHEN Weining, JIANG Yuan, et al Research and progress on learning-based source code vulnerability detection[J]. Chinese Journal of Computers, 2024, 47 (2): 337- 374
|
5 |
LI Z, ZOU D Q, XU S H, et al. VulDeePecker: a deep learning based system for vulnerability detection [C] //Proceedings of the 25th Network and Distributed System Security Symposium. San Diego: IEEE, 2018.
|
6 |
LI Z, ZOU D Q, XU S H, et al SySeVR: a framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19 (4): 2244- 2258
doi: 10.1109/TDSC.2021.3051525
|
7 |
LI Z, ZOU D Q, XU S H, et al VulDeeLocator: a deep learning-based fine-grained vulnerability detector[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19 (4): 2821- 2837
doi: 10.1109/TDSC.2021.3076142
|
8 |
WU Y M, ZOU D Q, DOU S H, et al. VulCNN: an image inspired scalable vulnerability detection system [C] //Proceedings of the 44th International Conference on Software Engineering, Pittsburgh: ACM, 2022: 2365-2376.
|
9 |
ZHOU Y Q, LIU S Q, DU X N, et al Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks[J]. Neural Information Processing Systems, 2019, 2019 (32): 10197- 10207
|
10 |
WANG H T, YE G X, TANG Z Y, et al Combining graph-based learning with automated data collection for code vulnerability detection[J]. IEEE Transactions on Information Forensics and Security, 2021, 2021 (16): 1943- 1958
|
11 |
FAN Y H, WAN C H, FU C, et al VDoTR: vulnerability detection based on tensor representation of comprehensive code graphs[J]. Computers and Security, 2023, 2023 (130): 103247
|
12 |
ALOMAR E A, ALOMAR S A, MKAOUER M W. On the use of static analysis to engage students with software quality improvement: an experience with PMD [C] //Proceeding of 2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training.Melbourne: IEEE, 2023: 179-191.
|
13 |
BARTA B, MANZ G, SIKET I, et al. Challenges of sonarqube plug-in maintenance [C] //Proceedings of the 26th International Conference on Software Analysis, Evolution, and Reengineering. Hangzhou: IEEE, 2019: 574-578.
|
14 |
PERL H, DECHAND S, SMITH M, et al. VCCFinder: finding potential vulnerabilities in open-source projects to assist code audits [C] //Proceedings of the 22nd ACM Conference on Computer and Communications Security. Denver: ACM, 2015: 426-437.
|
15 |
ZOU D Q, XU S H, WANG S J, et al μVulDeePecker: a deep learning-based system for multiclass vulnerability detection[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18 (5): 2224- 2236
|
16 |
FENG Q, FENG C D, HONG W J, et al. Graph neural network-based vulnerability predication [C] //Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution. Adelaide: IEEE, 2020: 800-801.
|
17 |
徐泽鑫, 段立娟, 王文健, 等 基于上下文特征融合的代码漏洞检测方法[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2260- 2270 XU Zexin, DUAN Lijuan, WANG Wenjian, et al Code vulnerability detection method based on contextual feature fusion[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2260- 2270
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|