Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 148-157    DOI: 10.3785/j.issn.1008-973X.2026.01.014
能源与动力工程     
基于多目标优化的复杂热电联产系统运行规划
陈坚红(),王国雲,左克清,张洪坤,鲍彦克
浙江大学 能源工程学院,浙江 杭州 310027
Operation planning of complex combined heat and power systems based on multi-objective optimization
Jianhong CHEN(),Guoyun WANG,Keqing ZUO,Hongkun ZHANG,Yanke BAO
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1921 KB)   HTML
摘要:

热电厂的扩建、改造和升级显著增加了热电联产系统在机组数量、种类及性能劣化程度等方面的复杂性. 针对复杂热电联产系统的运行规划,综合考虑机组在实际运行过程中的启停状态、爬坡速率等影响因素,构建基于能效、?、经济、环境等的多目标优化模型. 引入熵权法客观地分配各目标的权重,将多目标优化问题转化为单目标优化问题;采用动态规划算法进行求解,确保最优解的确定性和客观性. 以某热电厂的复杂热电联产系统为例,随机选取24 h的热电负荷需求进行运行规划和计算分析,并将优化结果与原设计方案进行对比,结果表明优化计算后运行成本降低了7.96万元/d. 所提模型能够有效地提升复杂热电联产系统运行的经济性与可靠性.

关键词: 复杂热电联产系统多目标优化运行规划熵权法动态规划法    
Abstract:

The expansion, transformation, and upgrading of thermal power plants have significantly increased the complexity of combined heat and power (CHP) systems in terms of the number, type, and performance degradation level of units. A multi-objective optimization model based on the energy efficiency, exergy, economy and environmental factors was constructed for the unit operation planning of complex CHP systems, with comprehensive consideration of the influencing factors such as the unit commitment status and ramping rates of the units during the actual operation process. The entropy weight method was introduced to objectively allocate weights to each objective, transforming the multi-objective optimization problem into single-objective optimization problems. A dynamic programming algorithm was employed to solve the problems, ensuring the determinacy and objectivity of the optimal solution. Taking the complex CHP system of a thermal power plant as a case study, the heat and power load demand over a 24-hour period was randomly selected for operation planning and analysis. The comparison between the optimization results and the results of the original design scheme indicated that the operating cost was reduced by 79 600 yuan per day after optimization. The proposed model can effectively improve the operation economy and reliability of complex CHP systems.

Key words: complex combined heat and power system    multi-objective optimization    operation planning    entropy weight method    dynamic programming method
收稿日期: 2024-12-04 出版日期: 2025-12-15
:  TK 212  
作者简介: 陈坚红(1967—),男,副教授,硕导,从事热能与动力工程研究. orcid.org/0000-0003-0957-6914. E-mail:power@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈坚红
王国雲
左克清
张洪坤
鲍彦克

引用本文:

陈坚红,王国雲,左克清,张洪坤,鲍彦克. 基于多目标优化的复杂热电联产系统运行规划[J]. 浙江大学学报(工学版), 2026, 60(1): 148-157.

Jianhong CHEN,Guoyun WANG,Keqing ZUO,Hongkun ZHANG,Yanke BAO. Operation planning of complex combined heat and power systems based on multi-objective optimization. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 148-157.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.014        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/148

图 1  复杂热电联产系统运行规划子问题分解图
图 2  负荷不平稳工况下经济成本计算示意图
图 3  基于熵权法的加权单目标优化模型的计算流程图
图 4  不同机组能源利用效率与能量流关系图
启动方式$\theta _{\mathrm{w}} $/℃ts/d
冷态额定参数启动< 150> 7
温态额定参数启动150~3502~7
热态额定参数启动> 350< 2
滑参数启动
表 1  汽轮机启动方式
图 5  复杂热电联产系统运行规划求解流程图
图 6  案例热电厂的系统拓扑结构图
图 7  热电厂3×24 h热电负荷曲线
图 8  简化处理后的热电厂3×24 h热电负荷曲线
方案f(η)/万元f(e)/万元f(c)/万元F/万元
原方案355 09227 960234 91092 222
方案1364 29227 960234 634101 698
方案2366 27727 960234 405103 912
方案3361 92227 960237 81996 143
方案4361 18127 960240 20293 019
方案5359 58127 960240 13391 488
方案6364 81527 960238 32198 534
方案7364 72227 960238 28798 475
方案8379 82427 960236 782115 082
方案9363 22427 960236 82698 438
表 2  各方案定量计算结果
图 9  寻优计算后各机组运行方案成本曲线
图 10  热电厂各机组在24 h内的功率运行规划曲线
图 11  热电厂各机组在24 h内的中压抽汽量运行规划曲线
图 12  热电厂各机组在24 h内的低压抽汽量运行规划曲线
14 LIU Keyi. The optimal configuration of the district heating source structure based on the 4E evaluation index system [D]. Harbin: Harbin Institute of Technology, 2015.
15 孙敬凯. 基于技术经济评价体系的供热规划关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
SUN Jingkai. Reaearch of key problems in heating planning based on technical economic evaluation [D]. Harbin: Harbin Institute of Technology, 2016.
16 国家环境保护局科技标准司. 工业污染物产生和排放系数手册[M]. 北京: 中国环境科学出版社, 1996: 154–162.
17 叶倩琳, 王万良, 王铮 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1107- 1120
YE Qianlin, WANG Wanliang, WANG Zheng Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1107- 1120
18 HAN G, FENG G, TANG C, et al Evaluation of the ventilation mode in an ISO class 6 electronic cleanroom by the AHP-entropy weight method[J]. Energy, 2023, 284: 128586
doi: 10.1016/j.energy.2023.128586
19 FENG Z, SHEN X, LI P, et al Performance optimization and scheme evaluation of liquid cooling battery thermal management systems based on the entropy weight method[J]. Journal of Energy Storage, 2024, 80: 110329
doi: 10.1016/j.est.2023.110329
20 ZHU Y, TIAN D, YAN F. Effectiveness of entropy weight method in decision-making [J]. Mathematical Problems in Engineering, 2020: 3564835.
21 CHEN P Effects of normalization on the entropy-based TOPSIS method[J]. Expert Systems with Applications, 2019, 136: 33- 41
doi: 10.1016/j.eswa.2019.06.035
22 KUMAR R, SINGH S, BILGA P S, et al Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review[J]. Journal of Materials Research and Technology, 2021, 10: 1471- 1492
doi: 10.1016/j.jmrt.2020.12.114
23 SHI H, LIU M, LI Y, et al Multi-objective optimization of integrated lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 223: 119991
doi: 10.1016/j.applthermaleng.2023.119991
24 黄树红, 孙奉仲, 盛德仁, 等. 汽轮机原理[M]. 北京: 中国电力出版社, 2008: 335–343.
1 国家发展改革委, 国家能源局. 国家发展改革委 国家能源局关于开展全国煤电机组改造升级的通知[EB/OL]. (2021-10-29) [2024-12-02]. https://www.gov.cn/zhengce/zhengceku/2021-11/03/content_5648562.htm.
2 MOSTAFA M H, RYAD A K, HUSSIEN S A, et al Data-driven stochastic dynamic economic dispatch for combined heat and power systems using particle swarm optimization[J]. Energy Reports, 2024, 12: 4555- 4567
doi: 10.1016/j.egyr.2024.10.032
3 HASSABALLAH E G, KESHTA H E, ABDEL-LATIF K M, et al A novel strategy for real-time optimal scheduling of grid-tied microgrid considering load management and uncertainties[J]. Energy, 2024, 299: 131419
doi: 10.1016/j.energy.2024.131419
4 HE C, LIANG Z, YANG Z, et al Multi-objective optimization for hydrogen-mixed combined heat and power (CHP) plants considering economic and environmental factors based on MILP[J]. Electric Power Systems Research, 2023, 221: 109442
doi: 10.1016/j.jpgr.2023.109442
5 KAZEMIANI-NAJAFABADI P, AMIRI RAD E Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis[J]. Energy, 2021, 224: 120135
doi: 10.1016/j.energy.2021.120135
6 ZHAO T, ZHENG Y, LI G Integrated unit commitment and economic dispatch of combined heat and power system considering heat-power decoupling retrofit of CHP unit[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108498
7 WU H, LIU Z, HE Y, et al Two-layer optimal scheduling method for regional integrated energy system considering flexibility characteristics of CHP system[J]. Energy, 2024, 308: 132970
doi: 10.1016/j.energy.2024.132970
8 王玮, 王子欣, 孔德安, 等 灵活性驱动下的热电联产机组多目标协同控制策略[J]. 动力工程学报, 2024, 44 (12): 1907- 1915
WANG Wei, WANG Zixin, KONG De’an, et al Flexibility-driven multi-objective cooperative control strategy for combined heat and power units[J]. Journal of Chinese Society of Power Engineering, 2024, 44 (12): 1907- 1915
9 LIU M, WANG S, YAN J Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm[J]. Energy, 2021, 214: 119022
doi: 10.1016/j.energy.2020.119022
10 许士锦, 钱海, 曾乔迪, 等 基于多目标优化的多区域热电联产最优调度[J]. 供用电, 2023, 40 (11): 54- 60
XU Shijin, QIAN Hai, ZENG Qiaodi, et al Optimal dispatch of multi-region combined heat and power generation based on multi-objective optimization[J]. Distribution & Utilization, 2023, 40 (11): 54- 60
11 王安, 杨绮, 王菁, 等 含储热的热电联产机组经济性与灵活性多目标优化算法[J]. 电力工程技术, 2024, 43 (2): 248- 259
WANG An, YANG Qi, WANG Jing, et al Multi-objective optimization algorithm for economy and flexibility of cogeneration unit with heat storage[J]. Electric Power Engineering Technology, 2024, 43 (2): 248- 259
doi: 10.12158/j.2096-3203.2024.02.026
12 WANG C, SONG J, ZHENG W, et al Analysis of economy, energy efficiency, environment: a case study of the CHP system with both civil and industrial heat users[J]. Case Studies in Thermal Engineering, 2022, 30: 101768
doi: 10.1016/j.csite.2022.101768
13 刘帅东, 韩松, 荣娜, 等 计及(火用)效率的电-气-热综合能源系统多目标优化调度方法[J]. 电网技术, 2024, 48 (7): 2715- 2722
LIU Shuaidong, HAN Song, RONG Na, et al A multi-objective optimal scheduling method for integrated electricity-gas-heat energy system taking into account the exergy efficiency of the integrated energy system[J]. Power System Technology, 2024, 48 (7): 2715- 2722
[1] 罗亚波,喻少龙,张峰,李存荣. 改进候鸟算法求解可重入混流车间批量流调度[J]. 浙江大学学报(工学版), 2025, 59(8): 1598-1607.
[2] 王昱,马春荣,赵明月. 基于混合策略多目标粒子群的异构无人机协同多任务分配[J]. 浙江大学学报(工学版), 2025, 59(4): 821-831.
[3] 李勇,王跃,柳富强,孙柏青,李恺如. 护工-机器人协作养老情境下的多任务分配框架[J]. 浙江大学学报(工学版), 2025, 59(2): 375-383.
[4] 张盈斐,胡小兵,周航,冯序增. 基于改进的NSGA-II算法的三维扇区自动划设[J]. 浙江大学学报(工学版), 2025, 59(2): 413-422.
[5] 李艳波,卜宇,李若尘,武奇生,魏建民,陈俊硕. 基于改进德尔菲-熵权法的高速公路能源评价体系[J]. 浙江大学学报(工学版), 2025, 59(12): 2645-2654.
[6] 陈海烨,张则强,梁巍,郭磊,段淇耀. 多约束人机协作U型拆卸线问题建模与优化[J]. 浙江大学学报(工学版), 2025, 59(11): 2248-2258.
[7] 刘超,丁浩,郑娟娟,黄绍服,罗祖青,沈刚. 丝杠旋铣预测建模与自适应优化方法[J]. 浙江大学学报(工学版), 2025, 59(11): 2259-2268.
[8] 邹昊,胡国暾,邱云龙,石伟,陈伟芳. 高马赫数飞行器壁面质量引射流量分配多目标优化[J]. 浙江大学学报(工学版), 2025, 59(11): 2439-2450.
[9] 郝梦园,张雷克,刘小莲,王雪妮,田雨. 基于人工兔算法的复杂输水系统泵阀联合优化调控[J]. 浙江大学学报(工学版), 2025, 59(10): 2115-2124.
[10] 余廷芳,张艮离,周嘉鹏,汤一村. 超临界CO2布雷顿循环耦合有机闪蒸循环的性能分析及优化[J]. 浙江大学学报(工学版), 2025, 59(1): 130-140.
[11] 李若琼,翁源,李欣. 分数阶磁耦合谐振双向无线电能传输系统参数优化[J]. 浙江大学学报(工学版), 2025, 59(1): 141-151.
[12] 叶倩琳,王万良,王铮. 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1107-1120.
[13] 詹燕,陈洁雅,江伟光,鲁建厦,汤洪涛,宋新禹,许丽丽,刘赛淼. 基于改进NSGA-Ⅱ的多目标车间物料配送方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2510-2519.
[14] 曹晓彦,于敏,周瑾,王运志. 可调旋转式流体阻尼器参数多目标优化设计[J]. 浙江大学学报(工学版), 2023, 57(7): 1439-1449.
[15] 余廷芳,宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.