| 能源与动力工程 |
|
|
|
|
| 基于多目标优化的复杂热电联产系统运行规划 |
陈坚红( ),王国雲,左克清,张洪坤,鲍彦克 |
| 浙江大学 能源工程学院,浙江 杭州 310027 |
|
| Operation planning of complex combined heat and power systems based on multi-objective optimization |
Jianhong CHEN( ),Guoyun WANG,Keqing ZUO,Hongkun ZHANG,Yanke BAO |
| College of Energy Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
陈坚红,王国雲,左克清,张洪坤,鲍彦克. 基于多目标优化的复杂热电联产系统运行规划[J]. 浙江大学学报(工学版), 2026, 60(1): 148-157.
Jianhong CHEN,Guoyun WANG,Keqing ZUO,Hongkun ZHANG,Yanke BAO. Operation planning of complex combined heat and power systems based on multi-objective optimization. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 148-157.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.014
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/148
|
| 14 |
LIU Keyi. The optimal configuration of the district heating source structure based on the 4E evaluation index system [D]. Harbin: Harbin Institute of Technology, 2015.
|
| 15 |
孙敬凯. 基于技术经济评价体系的供热规划关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. SUN Jingkai. Reaearch of key problems in heating planning based on technical economic evaluation [D]. Harbin: Harbin Institute of Technology, 2016.
|
| 16 |
国家环境保护局科技标准司. 工业污染物产生和排放系数手册[M]. 北京: 中国环境科学出版社, 1996: 154–162.
|
| 17 |
叶倩琳, 王万良, 王铮 多目标粒子群优化算法及其应用研究综述[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1107- 1120 YE Qianlin, WANG Wanliang, WANG Zheng Survey of multi-objective particle swarm optimization algorithms and their applications[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1107- 1120
|
| 18 |
HAN G, FENG G, TANG C, et al Evaluation of the ventilation mode in an ISO class 6 electronic cleanroom by the AHP-entropy weight method[J]. Energy, 2023, 284: 128586
doi: 10.1016/j.energy.2023.128586
|
| 19 |
FENG Z, SHEN X, LI P, et al Performance optimization and scheme evaluation of liquid cooling battery thermal management systems based on the entropy weight method[J]. Journal of Energy Storage, 2024, 80: 110329
doi: 10.1016/j.est.2023.110329
|
| 20 |
ZHU Y, TIAN D, YAN F. Effectiveness of entropy weight method in decision-making [J]. Mathematical Problems in Engineering, 2020: 3564835.
|
| 21 |
CHEN P Effects of normalization on the entropy-based TOPSIS method[J]. Expert Systems with Applications, 2019, 136: 33- 41
doi: 10.1016/j.eswa.2019.06.035
|
| 22 |
KUMAR R, SINGH S, BILGA P S, et al Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: a critical review[J]. Journal of Materials Research and Technology, 2021, 10: 1471- 1492
doi: 10.1016/j.jmrt.2020.12.114
|
| 23 |
SHI H, LIU M, LI Y, et al Multi-objective optimization of integrated lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 223: 119991
doi: 10.1016/j.applthermaleng.2023.119991
|
| 24 |
黄树红, 孙奉仲, 盛德仁, 等. 汽轮机原理[M]. 北京: 中国电力出版社, 2008: 335–343.
|
| 1 |
国家发展改革委, 国家能源局. 国家发展改革委 国家能源局关于开展全国煤电机组改造升级的通知[EB/OL]. (2021-10-29) [2024-12-02]. https://www.gov.cn/zhengce/zhengceku/2021-11/03/content_5648562.htm.
|
| 2 |
MOSTAFA M H, RYAD A K, HUSSIEN S A, et al Data-driven stochastic dynamic economic dispatch for combined heat and power systems using particle swarm optimization[J]. Energy Reports, 2024, 12: 4555- 4567
doi: 10.1016/j.egyr.2024.10.032
|
| 3 |
HASSABALLAH E G, KESHTA H E, ABDEL-LATIF K M, et al A novel strategy for real-time optimal scheduling of grid-tied microgrid considering load management and uncertainties[J]. Energy, 2024, 299: 131419
doi: 10.1016/j.energy.2024.131419
|
| 4 |
HE C, LIANG Z, YANG Z, et al Multi-objective optimization for hydrogen-mixed combined heat and power (CHP) plants considering economic and environmental factors based on MILP[J]. Electric Power Systems Research, 2023, 221: 109442
doi: 10.1016/j.jpgr.2023.109442
|
| 5 |
KAZEMIANI-NAJAFABADI P, AMIRI RAD E Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis[J]. Energy, 2021, 224: 120135
doi: 10.1016/j.energy.2021.120135
|
| 6 |
ZHAO T, ZHENG Y, LI G Integrated unit commitment and economic dispatch of combined heat and power system considering heat-power decoupling retrofit of CHP unit[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108498
|
| 7 |
WU H, LIU Z, HE Y, et al Two-layer optimal scheduling method for regional integrated energy system considering flexibility characteristics of CHP system[J]. Energy, 2024, 308: 132970
doi: 10.1016/j.energy.2024.132970
|
| 8 |
王玮, 王子欣, 孔德安, 等 灵活性驱动下的热电联产机组多目标协同控制策略[J]. 动力工程学报, 2024, 44 (12): 1907- 1915 WANG Wei, WANG Zixin, KONG De’an, et al Flexibility-driven multi-objective cooperative control strategy for combined heat and power units[J]. Journal of Chinese Society of Power Engineering, 2024, 44 (12): 1907- 1915
|
| 9 |
LIU M, WANG S, YAN J Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm[J]. Energy, 2021, 214: 119022
doi: 10.1016/j.energy.2020.119022
|
| 10 |
许士锦, 钱海, 曾乔迪, 等 基于多目标优化的多区域热电联产最优调度[J]. 供用电, 2023, 40 (11): 54- 60 XU Shijin, QIAN Hai, ZENG Qiaodi, et al Optimal dispatch of multi-region combined heat and power generation based on multi-objective optimization[J]. Distribution & Utilization, 2023, 40 (11): 54- 60
|
| 11 |
王安, 杨绮, 王菁, 等 含储热的热电联产机组经济性与灵活性多目标优化算法[J]. 电力工程技术, 2024, 43 (2): 248- 259 WANG An, YANG Qi, WANG Jing, et al Multi-objective optimization algorithm for economy and flexibility of cogeneration unit with heat storage[J]. Electric Power Engineering Technology, 2024, 43 (2): 248- 259
doi: 10.12158/j.2096-3203.2024.02.026
|
| 12 |
WANG C, SONG J, ZHENG W, et al Analysis of economy, energy efficiency, environment: a case study of the CHP system with both civil and industrial heat users[J]. Case Studies in Thermal Engineering, 2022, 30: 101768
doi: 10.1016/j.csite.2022.101768
|
| 13 |
刘帅东, 韩松, 荣娜, 等 计及(火用)效率的电-气-热综合能源系统多目标优化调度方法[J]. 电网技术, 2024, 48 (7): 2715- 2722 LIU Shuaidong, HAN Song, RONG Na, et al A multi-objective optimal scheduling method for integrated electricity-gas-heat energy system taking into account the exergy efficiency of the integrated energy system[J]. Power System Technology, 2024, 48 (7): 2715- 2722
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|