Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 71-80    DOI: 10.3785/j.issn.1008-973X.2026.01.007
计算机技术     
姿态引导的双分支换装行人重识别网络
周思瑶(),夏楠*(),江佳鸿
大连工业大学 信息科学与工程学院,辽宁 大连 116034
Pose-guided dual-branch network for clothing-changing person re-identification
Siyao ZHOU(),Nan XIA*(),Jiahong JIANG
School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
 全文: PDF(1117 KB)   HTML
摘要:

针对换装行人重识别任务中由复杂环境和行人服装变化等因素导致的识别精度下降的问题,提出姿态引导的双分支换装行人重识别网络PGNet,该网络采用以外观特征为基础、由姿态特征引导的双分支结构. 为了有效去除服装相关信息的干扰,降低其对模型性能的影响,同时保留深度表征特征,设计多层次特征融合模块;构建动作关联和自然拓扑邻接矩阵,组合为双重矩阵后输入图卷积网络,并引入邻接矩阵加权机制以增强模型对姿态特征的捕捉能力;采用双线性多特征池化方法增强姿态与外观特征的互补性,从而提升识别精度. 实验结果表明,PGNet在换装数据集PRCC、VC-Clothes、Celeb-reID以及Celeb-reID-light上的mAP指标分别为60.5%、84.7%、15.7%、22.6%,Rank-1指标分别为63.7%、93.3%、59.5%、41.2%,优于SirNet等其他对比方法,验证了所提方法能够有效降低服装变化的影响,并显著提高识别精度.

关键词: 换装行人重识别姿态引导特征融合图卷积网络注意力机制    
Abstract:

A pose-guided dual-branch clothing-changing person re-identification network (PGNet) was proposed to address the issue of reduced recognition accuracy in the clothing-changing person re-identification tasks caused by complex environments and clothing variations. The network adopted a dual-branch architecture based on appearance features and guided by pose features. To effectively remove the interference of clothing-related information, reduce its impact on model performance, and preserve the deep representational features, a multi-level feature fusion module was designed. An action-related adjacency matrix and a natural topology adjacency matrix were constructed and combined to form a dual adjacency matrix, which was input into the graph convolutional network. An adjacency matrix weighting mechanism was introduced to enhance the model’s ability to capture pose features. A bilinear multi-feature pooling method was adopted to enhance the complementarity between the pose features and the appearance features, thereby improving the recognition accuracy. Experimental results demonstrated that the PGNet achieved mAP values of 60.5%, 84.7%, 15.7%, 22.6%, and Rank-1 accuracies of 63.7%, 93.3%, 59.5%, 41.2% on the clothing-changing datasets of PRCC, VC-Clothes, Celeb-reID, and Celeb-reID-light, respectively, outperforming other comparative methods such as SirNet. The proposed method can effectively reduce the impact of clothing variations and significantly improve the recognition accuracy.

Key words: clothing-changing person re-identification    pose guide    feature fusion    graph convolutional network    attention mechanism
收稿日期: 2025-01-24 出版日期: 2025-12-15
:  TP 183  
基金资助: 教育部产学合作协同育人资助项目(220603231024713).
通讯作者: 夏楠     E-mail: 220520854000543@xy.dlpu.edu.cn;xianan@dlpu.edu.cn
作者简介: 周思瑶(2000—),女,硕士生,从事行人重识别研究. orcid.org/0009-0005-9352-443X. E-mail:220520854000543@xy.dlpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周思瑶
夏楠
江佳鸿

引用本文:

周思瑶,夏楠,江佳鸿. 姿态引导的双分支换装行人重识别网络[J]. 浙江大学学报(工学版), 2026, 60(1): 71-80.

Siyao ZHOU,Nan XIA,Jiahong JIANG. Pose-guided dual-branch network for clothing-changing person re-identification. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 71-80.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.007        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/71

图 1  姿态引导的双分支换装行人重识别网络PGNet的整体结构图
图 2  邻接矩阵构建示意图
图 3  邻接矩阵加权模块结构图
图 4  多层次特征融合模块结构图
方法PRCC常规场景PRCC换衣场景VC-Clothes常规场景VC-Clothes换衣场景
mAP/%Rank-1/%mAP/%Rank-1/%mAP/%Rank-1/%mAP/%Rank-1/%
PCB[2]97.099.838.741.874.687.462.262.0
AGW[5]89.097.837.139.789.791.182.192.0
CAL[12]99.2100. 055.855.295.395.187.292.9
TransReID[6]97.098.245.042.993.892.481.090.4
CRE+BSGA[18]97.399.658.761.888.294.484.384.5
SCNet[15]97.8100. 059.961.389.694.984.490.1
IMS-GEP[1]99.899.765.857.394.994.781.781.8
CDM+GCA[7]94.399.361.364.892.893.182.783.7
IRM[4]52.354.280.190.1
PGAL[14]58.759.5
PGNet99.299.860.563.791.395.484.793.3
表 1  不同方法在PRCC和VC-Clothes数据集上的性能对比
方法Celeb-reIDCeleb-reID-light
mAP/%Rank-1/%mAP/%Rank-1/%
PCB[2]8.745.112.723.9
AGW[5]11.247.113.822.0
TransReID[6]9.345.712.921.2
RCSANet[8]11.955.616.729.5
CAL[12]13.759.218.533.6
ACID[9]11.452.515.827.9
MBUNet[19]12.855.521.535.5
SirNet[11]14.256.020.036.0
PGAL[14]15.360.923.340.4
PGNet15.759.522.641.2
表 2  不同方法在Celeb-reID和Celeb-reID-light数据集上的性能对比
方法Rank-1/%Rank-5/%Rank-10/%
AGW[5]39.745.848.5
TransReID[6]42.947.750.4
SCNet[15]61.368.170.2
IRM[4]54.260.564.2
PGNet63.770.873.7
表 3  PRCC数据集上不同方法的Rank-n指标对比
图 5  PRCC数据集上基线模型、IRM和PGNet的可视化测试结果
AFFM矩阵Am+AMWMBMFPPRCCVC-Clothes
mAP/%Rank-1/%mAP/%Rank-1/%
58.360.983.292.6
56.858.682.493.0
59.761.283.893.3
60.563.784.793.3
表 4  PGNet各模块的消融实验结果
方法PRCCVC-Clothes
mAP/%Rank-1/%mAP/%Rank-1/%
矩阵${{\boldsymbol{A}}_{\text{b}}}$57.659.282.993.0
矩阵${{\boldsymbol{A}}_{\text{m}}}$56.858.482.692.8
矩阵${{\boldsymbol{A}}_{\text{m}}}$+AMWM60.563.784.793.3
表 5  双重邻接矩阵加权模块及2种邻接矩阵的消融实验结果
1 ZHAO Z, LIU B, LU Y, et al Joint identity-aware mixstyle and graph-enhanced prototype for clothes-changing person re-identification[J]. IEEE Transactions on Multimedia, 2023, 26: 3457- 3468
2 SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline) [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 501–518.
3 闫禹铭, 何剑锋, 李殊昭, 等 现实场景下行人身份识别[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2022- 2032
YAN Yuming, HE Jianfeng, LI Shuzhao, et al Identity recognition under real scenes[J]. Journal of Zhejiang University: Engineering science, 2021, 55 (11): 2022- 2032
4 HE W, DENG Y, TANG S, et al. Instruct-ReID: a multi-purpose person re-identification task with instructions [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 17521–17531.
5 YE M, SHEN J, LIN G, et al Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 2872- 2893
doi: 10.1109/TPAMI.2021.3054775
6 HE S, LUO H, WANG P, et al. TransReID: Transformer-based object re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14993–15002.
7 DING Y, MAO R, ZHU H, et al. Discriminative pedestrian features and gated channel attention for clothes-changing person re-identification [C]// Proceedings of the IEEE International Conference on Multimedia and Expo. Niagara Falls: IEEE, 2024: 1–6.
8 HUANG Y, WU Q, XU J, et al. Clothing status awareness for long-term person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 11875–11884.
9 YANG Z, ZHONG X, ZHONG Z, et al Win-win by competition: auxiliary-free cloth-changing person re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 2985- 2999
doi: 10.1109/TIP.2023.3277389
10 WANG L, ZHANG Y, LU T, et al Multi feature fusion attention learning for clothing-changing person re-identification[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022, 105 (8): 1170- 1174
11 YANG S, KANG B, LEE Y Sampling agnostic feature representation for long-term person re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 6412- 6423
doi: 10.1109/TIP.2022.3207024
12 GU X, CHANG H, MA B, et al. Clothes-changing person re-identification with RGB modality only [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1060–1069.
13 WANG Q, QIAN X, FU Y, et al. Co-attention aligned mutual cross-attention for cloth-changing person re-identification [C]// Proceedings of the Asian Conference on Computer Vision. Macau: Springer, 2022: 2270–2288.
14 LIU X, LIU K, GUO J, et al Pose-guided attention learning for cloth-changing person re-identification[J]. IEEE Transactions on Multimedia, 2023, 26 (8): 5490- 5498
15 GUO P, LIU H, WU J, et al. Semantic-aware consistency network for cloth-changing person re-identification [C]// Proceedings of the 31st ACM International Conference on Multimedia. Ottawa: ACM, 2023: 8730–8739.
16 ZHU K, GUO H, LIU Z, et al. Identity-guided human semantic parsing for person re-identification [C]// Proceedings of the European Conference on Computer Vision. Glasgow: Springer, 2020: 346–363.
17 LIU F, YE M, DU B Dual level adaptive weighting for cloth-changing person re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 5075- 5086
doi: 10.1109/TIP.2023.3310307
18 MU J, LI Y, LI J, et al. Learning clothes-irrelevant cues for clothes-changing person re-identification [C]// Proceedings of the 33rd British Machine Vision Conference. London: BMVA, 2022: 337.
19 ZHANG G, LIU J, CHEN Y, et al. Multi-biometric unified network for cloth-changing person re-identification [C]// Proceedings of the IEEE International Conference on Multimedia and Expo. Taipei: IEEE, 2022: 1–6.
20 LI Y Utilizing silhouette and head information for improved cloth-changing person re-identification[J]. Advances in Engineering Technology Research, 2024, 11 (1): 614
doi: 10.56028/aetr.11.1.614.2024
21 NGUYEN V D, KHALDI K, NGUYEN D, et al. Contrastive viewpoint-aware shape learning for long-term person re-identification [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2024: 1030–1038.
22 JIANG J, XIA N A dual-channel network based on occlusion feature compensation for human pose estimation[J]. Image and Vision Computing, 2024, 151: 105290
doi: 10.1016/j.imavis.2024.105290
23 JIANG J, XIA N, YU X A feature matching and compensation method based on importance weighting for occluded human pose estimation[J]. Journal of King Saud University: Computer and Information Sciences, 2024, 36 (5): 102061
doi: 10.1016/j.jksuci.2024.102061
24 TU Z, ZHANG J, LI H, et al Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition[J]. IEEE Transactions on Multimedia, 2022, 25: 1819- 1831
25 SUN R, CHEN L, ZHANG L, et al Robust visible-infrared person re-identification based on polymorphic mask and wavelet graph convolutional network[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 2800- 2813
doi: 10.1109/TIFS.2024.3354377
26 HUANG M, HOU C, YANG Q, et al Reasoning and tuning: graph attention network for occluded person re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 1568- 1582
doi: 10.1109/TIP.2023.3247159
27 LIAN Y, HUANG W, LIU S, et al Person re-identification using local relation-aware graph convolutional network[J]. Sensors, 2023, 23 (19): 8138
doi: 10.3390/s23198138
28 WANG J, SUN K, CHENG T, et al Deep high-resolution representation learning for visual recognition[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364
doi: 10.1109/TPAMI.2020.2983686
29 DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248–255.
30 LI P, XU Y, WEI Y, et al Self-correction for human parsing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3260- 3271
doi: 10.1109/TPAMI.2020.3048039
31 HOSSAIN S, UMER S, ROUT R K, et al Fine-grained image analysis for facial expression recognition using deep convolutional neural networks with bilinear pooling[J]. Applied Soft Computing, 2023, 134: 109997
doi: 10.1016/j.asoc.2023.109997
32 YANG Q, WU A, ZHENG W S Person re-identification by contour sketch under moderate clothing change[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (6): 2029- 2046
doi: 10.1109/TPAMI.2019.2960509
33 SHU X, WANG X, ZANG X, et al Large-scale spatio-temporal person re-identification: algorithms and benchmark[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (7): 4390- 4403
[1] 肖剑,何昕泽,程鸿亮,杨小苑,胡欣. 基于多尺度特征增强的航拍小目标检测算法[J]. 浙江大学学报(工学版), 2026, 60(1): 19-31.
[2] 董超群,汪战,廖平,谢帅,荣玉杰,周靖淞. 轻量化YOLOv5s-OCG的轨枕裂纹检测算法[J]. 浙江大学学报(工学版), 2025, 59(9): 1838-1845.
[3] 程文鑫,闫光辉,常文文,吴佰靖,黄亚宁. 基于通道加权的多模态特征融合用于EEG疲劳驾驶检测[J]. 浙江大学学报(工学版), 2025, 59(9): 1775-1783.
[4] 周著国,鲁玉军,吕利叶. 基于改进YOLOv5s的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1608-1616.
[5] 张学军,梁书滨,白万荣,张奉鹤,黄海燕,郭梅凤,陈卓. 基于异构图表征的源代码漏洞检测方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1644-1652.
[6] 林宜山,左景,卢树华. 基于多头自注意力机制与MLP-Interactor的多模态情感分析[J]. 浙江大学学报(工学版), 2025, 59(8): 1653-1661.
[7] 翟亚红,陈雅玲,徐龙艳,龚玉. 改进YOLOv8s的轻量级无人机航拍小目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(8): 1708-1717.
[8] 付家瑞,李兆飞,周豪,黄惟. 基于Convnextv2与纹理边缘引导的伪装目标检测[J]. 浙江大学学报(工学版), 2025, 59(8): 1718-1726.
[9] 杨荣泰,邵玉斌,杜庆治. 基于结构感知的少样本知识补全[J]. 浙江大学学报(工学版), 2025, 59(7): 1394-1402.
[10] 杨宇豪,郭永存,李德永,王爽. 基于视觉信息的煤矸识别分割定位方法[J]. 浙江大学学报(工学版), 2025, 59(7): 1421-1433.
[11] 王圣举,张赞. 基于加速扩散模型的缺失值插补算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1471-1480.
[12] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
[13] 鞠文博,董华军. 基于上下文信息融合与动态采样的主板缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1159-1168.
[14] 周翔宇,刘毅志,赵肄江,廖祝华,张德城. 面向目的地预测的层次化空间嵌入BiGRU模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1211-1218.
[15] 李宗民,徐畅,白云,鲜世洋,戎光彩. 面向点云理解的双邻域图卷积方法[J]. 浙江大学学报(工学版), 2025, 59(5): 879-889.