Reliability and Quality Design |
|
|
|
|
Prediction of machining error of machine tool based on nonlinear statics model of feed system |
Shengtao LI1( ),Dawei ZHANG1( ),Shuguo ZHENG2 |
1.School of Mechanical Engineering, Tianjin University, Tianjin 300354, China 2.Tianjin First Machine Tool Co. , Ltd. , China General Technology (Group) Holding, Ltd. , Tianjin 300380, China |
|
|
Abstract In order to improve the machining accuracy of machine tools, the target of guide rail error is determined during the machine tool design stage, and the mapping relationship between guide rail errors and workpiece errors was studied. Firstly, based on Hertz contact theory, the coordination relationship between rolling element deformation and load was constructed, as well as the static equilibrium equation of the guide rail pair considering the structural stiffness of the slider. On this basis, the potential energy function for the guide rail pair was constructed. The equivalent stiffness model of the guide rail pair was established through the potential energy decomposition, and the finite element simulation verification was carried out. Then, based on the finite element model of the slider fastener, a stiffness matrix of the slider fastener facing the slider position nodes was constructed. Based on the principle of minimum potential energy and combined with the equivalent stiffness model of the guide rail pair, the error mapping relationship between the guide rail and the motion pair in the multi-slider system considering the structural stiffness of the slider fastener was established, and the finite element simulation verification was also carried out. Next, based on the multi-body system theory, a geometric error transfer model for machine tools was established to obtain the tool pose error. Finally, by employing the principle of geometric kinematics, a prediction model for workpiece machining errors was established by performing Boolean operations on the three-dimensional discrete points of the workpiece and the geometric boundaries of the tool, thereby establishing a mapping model between guide rail errors and workpiece errors. Taking a certain type of machine tool as an example, the influence of guide rail error and turntable error on workpiece error was compared and analyzed, which verified the feasibility of the proposed method. The research results can provide theoretical guidance for the precision design of machine tools.
|
Received: 20 May 2024
Published: 06 May 2025
|
|
Corresponding Authors:
Dawei ZHANG
E-mail: shengtao_li@tju.edu.cn;medzhang@tju.edu.cn
|
基于进给系统非线性静力学模型的机床加工误差预测
为提高机床的加工精度,在机床设计阶段即确定导轨误差的目标,并对导轨误差与工件误差之间的映射关系进行了研究。首先,基于赫兹接触理论,构建了滚动体变形与载荷间的协调关系以及考虑滑块结构刚度的导轨副静力平衡方程;在此基础上,构造了导轨副势能函数,通过势能分解建立了导轨副的等效刚度模型,并开展了有限元仿真验证。然后,基于滑块固定件有限元模型,构建了面向滑块位置节点的滑块固定件刚度矩阵,并基于最小势能原理,结合导轨副等效刚度模型建立了考虑滑块固定件结构刚度的多滑块系统中导轨与运动副间的误差映射关系,同样进行了有限元仿真验证。接着,基于多体系统理论建立了机床几何误差传递模型,得到了刀具的位姿误差。最后,借助几何运动学原理,开展工件三维离散点与刀具几何边界的布尔运算,构建了工件加工误差预测模型,从而建立了导轨误差与工件误差间的映射模型。以某型号机床为例,对比分析了导轨误差与转台误差对工件误差的影响,验证了所提出方法的可行性。研究结果可为机床的精度设计提供理论指导。
关键词:
导轨误差,
工件误差,
映射模型,
多滑块系统,
运动副误差
|
|
[1] |
孙健利. 直线滚动导轨机构承受垂直载荷时的刚度计算[J]. 华中科技大学学报(自然科学版), 1988, 16(5): 35-40. SUN J L. Stiffness calculation of linear motion guide under vertical load[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 1988, 16(5): 35-40.
|
|
|
[2] |
孙伟, 孔祥希, 汪博, 等. 直线滚动导轨的Hertz接触建模及接触刚度的理论求解[J]. 工程力学, 2013, 30(7): 230-234. SUN W, KONG X X, WANG B, et al. Contact modeling and analytical solution of contact stiffness by Hertz theory for the linear rolling guide system[J]. Engineering Mechanics, 2013, 30(7): 230-234.
|
|
|
[3] |
SHAW D, SU W L. Stiffness analysis of linear guideways without preload[J]. Journal of Mechanics, 2013, 29(2): 281-286.
|
|
|
[4] |
仇进生, 王禹林, 欧屹, 等. 滚动直线导轨副倾斜静刚度研究[J]. 机床与液压, 2018, 46(13): 14-16, 41. QIU J S, WANG Y L, OU Y, et al. Research on tilting stiffness of linear rolling guideway[J]. Machine Tool & Hydraulics, 2018, 46(13): 14-16, 41.
|
|
|
[5] |
倪国林, 孙俊兰, 姜大志. 滚动直线导轨副各向载荷及刚度模型的研究[J]. 装备制造技术, 2011(3): 6-8, 27. doi:10.4028/b-j4fgts NI G L, SUN J L, JIANG D Z. The studying of the respective load and rigidity's model for linear motion ball guide[J]. Equipment Manufacturing Technology, 2011(3): 6-8, 27.
doi: 10.4028/b-j4fgts
|
|
|
[6] |
张巍, 王民, 孙乐乐. 考虑预紧力和接触角变化的直线滚动导轨副刚度建模与分析[J]. 北京工业大学学报, 2018, 44(1): 56-63. ZHANG W, WANG M, SUN L L. Stiffness modeling and analysis considering influences of preload and contact angle of a linear rolling guide[J]. Journal of Beijing University of Technology, 2018, 44(1): 56-63.
|
|
|
[7] |
HUNG J P. Load effect on the vibration characteristics of a stage with rolling guides[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 89-99.
|
|
|
[8] |
JASTRZĘBSKI D, PAWEŁKO P, SZWENGIER G. Modeling the effect of geometric errors on the static characteristics of guide rail systems[J]. Advances in Manufacturing Science and Technology, 2012, 36(2): 31-41.
|
|
|
[9] |
PAWEŁKO P, BERCZYŃSKI S, GRZĄDZIEL Z. Modeling roller guides with preload[J]. Archives of Civil and Mechanical Engineering, 2014, 14(4): 691-699.
|
|
|
[10] |
WU J S, CHANG J C, HUNG J P. The effect of contact interface on dynamic characteristics of composite structures[J]. Mathematics and Computers in Simulation, 2007, 74(6): 454-467.
|
|
|
[11] |
鲁明. 直线滚动导轨动力学特性解析及有限元建模[D]. 沈阳: 东北大学, 2011. LU M. Dynamic characteristics analysis and finite element modeling of linear rolling guide[D]. Shenyang: Northeastern University, 2011.
|
|
|
[12] |
PARK C H, OH Y J, LEE C H, et al. Theoretical verification on the motion error analysis method of hydrostatic bearing tables using a transfer function[J]. International Journal of Precision Engineering and Manufacturing, 2003, 4(2): 64-70.
|
|
|
[13] |
NI Y B, ZHOU H Y, SHAO C Y, et al. Research on the error averaging effect in a rolling guide pair[J]. Chinese Journal of Mechanical Engineering, 2019, 32: 72.
|
|
|
[14] |
孙伟, 汪博, 鲁明, 等. 基于拉格朗日方程的直线滚动导轨系统解析建模[J]. 计算机集成制造系统, 2012, 18(4): 781-786. SUN W, WANG B, LU M, et al. Analytical modeling of linear rolling guide system based on Lagrange equation[J]. Computer Integrated Manufacturing Systems, 2012, 18(4): 781-786.
|
|
|
[15] |
孙光明, 张大卫, 孙铭泽, 等. 精密机床直线进给系统误差均化机理研究[J]. 工程设计学报, 2023, 30(2): 200-211. SUN G M, ZHANG D W, SUN M Z, et al. Research on error averaging mechanism of linear feed system for precision machine tools[J]. Chinese Journal of Engineering Design, 2023, 30(2): 200-211.
|
|
|
[16] |
RAHMAN M, HEIKKALA J, LAPPALAINEN K. Modeling, measurement and error compensation of multi-axis machine tools. Part I: theory[J]. International Journal of Machine Tools and Manufacture, 2000, 40(10): 1535-1546.
|
|
|
[17] |
刘又午, 章青, 王国锋, 等. 数控机床误差补偿技术及应用发展动态及展望[J]. 制造技术与机床, 1998(12): 5-6, 21. LIU Y W, ZHANG Q, WANG G F, et al. Development trend and prospect of error compensation technology and application of CNC machine tools[J]. Manufacturing Technology & Machine Tool, 1998(12): 5-6, 21.
|
|
|
[18] |
陈国达, 梁迎春, 孙雅洲, 等. 基于机床体误差模型的加工面形误差预测[J]. 纳米技术与精密工程, 2014(4): 242-248. CHEN G D, LIANG Y C, SUN Y Z, et al. Machined form error prediction based on volumetric error model of machine tool[J]. Nanotechnology and Precision Engineering, 2014(4): 242-248.
|
|
|
[19] |
YU H Z, JIANG L, WANG J D, et al. Prediction of machining accuracy based on geometric error estimation of tool rotation profile in five-axis multi-layer flank milling process[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(11): 2160-2177.
|
|
|
[20] |
刘泽九, 贺士荃, 刘晖. 滚动轴承应用[M]. 北京: 机械工业出版社, 2007. LIU Z J, HE S Q, LIU H. Application of rolling bearings[M]. Beijing: China Machine Press, 2007.
|
|
|
[21] |
万邦良. 最小势能原理和最小余能原理的图示证明法[J]. 力学与实践, 1983, 5(4): 49-50. WAN B L. Graphic proof of minimum potential energy principle and minimum complementary energy principle[J]. Mechanics and Engineering, 1983, 5(4): 49-50.
|
|
|
[22] |
杨洪涛, 秦鹏飞, 李莉, 等. 数控机床移动工作台定位精度预测的建模、仿真及实验[J]. 机电工程, 2025, 42(2): 351-361. YANG H T, QIN P F, LI L, et al. Modeling, simulation and experiment of positioning accuracy prediction of moving table of NC machine tool[J]. Journal of Mechanical & Electrical Engineering, 2025, 42(2): 351-361.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|