Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 10-19    DOI: 10.3785/j.issn.1006-754X.2024.03.315
Product Innovation Design     
Method for generating green conceptual design scheme of electromechanical products based on FSRce model
Lei ZHANG1,2(),Junwei FANG1,2(),Jin SU1,2,Chuang CAI1,2,Yunqi ZHAO3
1.School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
2.Anhui Provincial Key Laboratory of Low Carbon Recycling Technology and Equipment for Mechanical and Electrical Products, Hefei University of Technology, Hefei 230009, China
3.Institute of Rail Transit, Tongji University, Shanghai 201804, China
Download: HTML     PDF(3262KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem that some electromechanical products fail to comprehensively consider the requirements of customer and environment in the conceptual design stage, which affects the detailed design of products, a method for generating green conceptual design scheme of electromechanical products based on the function?structure?requirements of customer and environment (FSRce) model is proposed. Firstly, the nodes in the existing product design tree were extended and associated by selecting appropriate functions and structures from the case library; at the same time, the importance of customer and environment requirements of the product was obtained by means of data mining, expert scoring and other methods to construct the conceptual design space of product based on the FSRce model. Then, the weighted interval roughness method was used to analyze the importance of customer and environment requirements to obtain the relative importance of requirements, and then the fuzzy quality function deployment (FQFD) was used to transform the relative importance of requirements into the engineering characteristic weights of the product. Finally, the matter-element theory was used to construct the matter-element domain of product and the matter-element set of each structure based on engineering characteristics and the satisfaction scores of each structure were obtained by combining the weights of engineering characteristics, and the optimized product conceptual design scheme that met the requirements of customer and environment was selected by comparing the satisfaction. Taking a small industrial blower as an example, the conceptual design scheme was optimized based on the above method. Compared with the original scheme, the optimized blower reduced the energy consumption by 15.38%, reduced the carbon emission by 15.32%, and improved the satisfaction by 44.66%, which verified the feasibility and effectiveness of the proposed method. The proposed method provides a new way to generate the conceptual design scheme of electromechanical products, which can better assist designers to realize the green design of electromechanical products.



Key wordsfunction?structure?requirements of customer and environment model      conceptual design      weighted interval roughness method      fuzzy quality function deployment      matter-element theory     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TH 122  
Corresponding Authors: Lei ZHANG     E-mail: leonchao@163.com;2021170222@mail.hfut.edu.cn
Cite this article:

Lei ZHANG,Junwei FANG,Jin SU,Chuang CAI,Yunqi ZHAO. Method for generating green conceptual design scheme of electromechanical products based on FSRce model. Chinese Journal of Engineering Design, 2024, 31(1): 10-19.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.315     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/10


基于FSRce模型的机电产品绿色概念设计方案生成方法

针对部分机电产品在概念设计阶段未综合考虑客户和环境的需求,进而影响产品详细设计的问题,提出了一种基于功能—结构—客户和环境需求(function?structure?requirements of customer and environment, FSRce)模型的机电产品绿色概念设计方案生成方法。首先,从案例库中选择合适的功能和结构对现有产品设计树中的节点进行扩展和关联;同时通过数据挖掘、专家打分等方法获得产品的客户和环境需求重要度,以构建基于FSRce模型的产品概念设计空间。然后,先利用加权区间粗糙数法对客户和环境需求重要度进行分析,得到需求相对重要度,再运用模糊质量功能展开(fuzzy quality function deployment, FQFD)将需求相对重要度转化为产品的工程特性权重。最后,利用物元理论构建基于工程特性的产品物元域和各结构物元集,并结合工程特性权重得到各结构的满意度分值,通过比较满意度优选得到满足客户和环境需求的产品概念设计方案。以某小型工业吹风机为例,基于上述方法对其概念设计方案进行优化。相比于原始方案,优化后的吹风机在能源消耗上降低了15.38%,在碳排放上降低了15.32%,且客户满意度提高了44.66%,由此验证了所提出方法的可行性与有效性。所提出的方法为机电产品概念设计方案的生成提供了一种新思路,能更好地辅助设计人员实现对机电产品的绿色设计。


关键词: 功能—结构—客户和环境需求模型,  概念设计,  加权区间粗糙数法,  模糊质量功能展开,  物元理论 
Fig.1 Generation flow of green conceptual design scheme of electromechanical products based on FSRce model
Fig.2 Conceptual design space of electromechanical products based on FSRce model
语言变量三角模糊数代表符号
不相关(0,0,0.3)0?
弱相关(0.1,0.3,0.5)1?
相关(0.3,0.5,0.7)5?
强相关(0.5,0.7,0.9)9?
Table 1 Relationship between triangular fuzzy numbers and relativity language variables
Fig.3 Original conceptual design scheme of blower
需求类型具体需求需求代号需求重要度
客户厂家环境
客户需求干燥快速R19[8, 9]8[8, 9]5[4, 6]
运行安静R25[4, 6]6[5, 6]6[6, 7]
运行安全R38[7, 8]9[8, 9]5[8, 9]
握持舒服R48[7, 8]7[7, 8]5[4, 6]
耐久性高R57[7, 8]7[6, 7]8[7, 8]
易运输和保存R61[1, 2]8[7, 9]7[6, 8]
易加工和组装R72[1, 3]8[7, 9]5[4, 6]
环境需求易分解R81[1, 2]3[2, 4]8[8, 9]
可安全焚烧R91[1, 2]3[2, 4]8[8, 9]
安全排放R103[2, 4]6[5, 7]9[8, 9]
Table 2 Customer and environment requirements and corresponding importance of blower
Fig.4 Conceptual design space of blower based on FSRce model
需求重要度下界近似区间
客户厂家环境
R18[6.7, 8.0]8[6.7, 8.0]4[4.0, 6.7]
R24[4.0, 5.0]5[4.5, 5.5]6[5.0, 6.0]
R37[7.0, 7.7]8[7.7, 8.0]8[7.7, 8.0]
R47[6.0, 7.0]7[6.0, 7.0]4[4.0, 6.0]
R57[6.7, 7.0]6[6.0, 6.7]7[6.7, 7.0]
R61[1.0, 4.7]7[4.7, 7.0]6[3.5, 6.5]
R71[1.0, 4.0]7[4.0, 7.0]4[2.5, 5.5]
R81[1.0, 3.7]2[1.5, 5.0]8[3.7, 8.0]
R91[1.0, 3.7]2[1.5, 5.0]8[3.7, 8.0]
R102[2.0, 5.0]5[3.5, 6.5]8[5.0, 8.0]
Table 3 Approximate intervals of lower bounds for importance of customer and environment requirements of blower
需求重要度上界近似区间
客户厂家环境
R19[8.0, 9.0]9[8.0, 9.0]6[6.0, 8.0]
R26[6.0, 6.3]6[6.0, 6.3]7[6.3, 7.0]
R38[8.0, 8.7]9[8.7, 9.0]9[8.7, 9.0]
R48[7.3, 8.0]8[7.3, 8.0]6[6.0, 7.3]
R58[7.7, 8.0]7[7.0, 7.7]8[7.7, 8.0]
R62[2.0, 6.3]9[6.3, 9.0]8[5.0, 8.5]
R73[3.0, 6.0]9[6.0, 9.0]6[4.5, 7.5]
R82[2.0, 5.0]4[3.0, 6.5]9[5.0, 9.0]
R92[2.0, 5.0]4[3.0, 6.5]9[5.0, 9.0]
R104[4.0, 6.7]7[5.5, 8.0]9[6.7, 9.0]
Table 4 Approximate intervals of upper bounds for importance of customer and environment requirements of blower
需求相对重要度
下界区间上界区间
R1[6.2, 7.5][7.6, 8.8]
R2[4.3, 5.3][6.1, 6.4]
R3[7.3, 7.8][8.4, 8.8]
R4[5.6, 6.8][7.0, 7.9]
R5[2.2, 5.2][4.2, 7.2]
R6[2.6, 5.8][3.9, 7.5]
R7[6.5, 6.9][7.5, 7.9]
R8[1.7, 4.9][2.9, 6.2]
R9[1.7, 4.9][2.9, 6.2]
R10[3.0, 6.0][5.0, 7.6]
Table 5 Relative importance boundary interval for customer and environment requirements of blower
需求相对重要度相对重要度归一化值
R17.70.131
R25.90.101
R38.10.138
R46.90.118
R57.20.123
R64.80.082
R74.70.080
R83.90.066
R93.90.066
R105.60.095
Table 6 Relative importance of customer and environment requirements of blower
需求工程特性
气流量气流温度质量硬度寿命噪声能源消耗量碳排放量
R19?9?0?0?0?0?9?1?
R25?0?0?0?0?9?0?0?
R35?9?0?0?5?0?0?0?
R40?0?9?0?0?0?0?0?
R50?0?0?9?9?0?0?0?
R60?0?0?0?5?0?1?0?
R70?0?0?1?0?0?0?0?
R80?0?0?1?0?0?0?5?
R90?0?0?0?0?0?0?9?
R100?0?0?0?0?0?9?9?
Table 7 Relativity between customer and environment requirements and engineering characteristics of blower
功能结构工程特性
转速/(r/s)温度/℃质量/g硬度(HR)寿命/h噪声/dB能源消耗量/(kW·h)碳排放量/kg
转动电机(150, 450)/(120, 200)/(500, 900)(60, 75)(0.5, 1.0)(0.3, 0.7)
吹风风扇//(60, 85)/(60, 75)
加热加热器/(50, 70)(20, 45)//(0.8, 1.2)(0.5, 0.8)
传导开关/线束//(200, 300)//
握持外壳//(300, 600)(80, 150)/
Table 8 Matter-element domain of blower based on engineering characteristics
功能结构工程特性
转速/(r/s)气流温度/℃质量/g硬度(HR)寿命/h噪声/dB能源消耗量/(kW·h)碳排放量/kg
转动

无刷电机

有刷电机

交流电机

400

340

280

/

140

150

180

/

900

750

700

65

72

70

540|0.65

600|0.80

700|1.00

350|0.43

390|0.53

460|0.67

吹风

滚动叶片风扇

离心风扇

轴流风扇

//

60

82

75

/

65

73

70

加热

PTC发热体

金属丝加热器

陶瓷加热器

/

57

70

63

26

40

32

//

560|0.8

700|1.0

840|1.2

370|0.53

460|0.66

550|0.79

传导

PVC线束

硅胶线束

铝箔线束

//

200

240

270

//

0.20|

0.23|

0.28|

握持

ABS塑料外壳

PC塑料外壳

金属外壳

//

350

410

600

100

110

130

/

1.23|

1.45|

4.80|

0.16|

0.46|

1.26|

Table 9 Matter-element set of each structure of blower based on engineering characteristics
功能结构工程特性层次分值满意度分值
转速气流温度质量硬度寿命噪声能源消耗量碳排放量
转动

无刷电机

有刷电机

交流电机

9

7

5

0

0

0

7

7

3

0

0

0

7

3

3

7

3

3

7

5

1

7

5

1

8.606

5.850

3.076

吹风

滚动叶片风扇

离心风扇

轴流风扇

0

0

0

0

0

0

7

3

5

0

0

0

0

0

0

7

1

3

0

0

0

0

0

0

1.701

0.497

0.729

加热

PTC发热体

金属丝加热器

陶瓷加热器

0

0

0

3

9

7

7

3

5

0

0

0

0

0

0

0

0

0

9

5

1

9

5

1

5.569

4.631

2.655

传导

PVC线束

硅胶线束

铝箔线束

0

0

0

0

0

0

9

7

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.143

0.889

0.381

握持

ABS塑料外壳

PC塑料外壳

金属外壳

0

0

0

0

0

0

9

3

1

3

5

7

0

0

0

0

0

0

0

0

0

0

0

0

1.641

1.211

1.289

Table 10 Satisfaction scores of each structure of blower based on engineering characteristics
Fig.5 Optimized conceptual design scheme of blower
Fig.6 Comparison of original and optimized conceptual design schemes for blower
[1]   高洋,刘志峰,胡迪,等.面向绿色设计的客户需求工程参数转化方法[J].中国机械工程,2011,22(5):580-587.
GAO Y, LIU Z F, HU D, et al. Research on conversion method from customer requirements to technical parameters for green design[J]. China Mechanical Engineering, 2011, 22(5): 580-587.
[2]   付岩,王黎明,李方义,等.基于FSMP模型的机电产品绿色设计方案生成方法[J].计算机集成制造系统,2023, 29(4):1301-1312.
FU Y, WANG L M, LI F Y, et al. Generation method of green design scheme for mechatronic products based on FSMP model[J]. Computer Integrated Manufacturing Systems, 2023, 29(4): 1301-1312.
[3]   CHIU M C, CHU C H. Review of sustainable product design from life cycle perspectives[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(7): 1259-1272.
[4]   闫喜强,刘宗政,杨毅晟.复杂产品多学科概念设计建模方法研究[J].机械设计,2021,38():104-108.
YAN X Q, LIU Z Z, YANG Y S. Multidisciplinary conceptual design modeling for complex products[J]. Journal of Machine Design, 2021, 38(Supp. 1): 104-108.
[5]   RAMANI K, RAMANUJAN D, BERNSTEIN W Z, et al. Integrated sustainable life cycle design: a review[J]. Journal of Mechanical Design, 2010, 132(9): 091004.
[6]   GERO J S, KANNENGIESSER U. The situated function‒behaviour‒structure framework[J]. Design Studies, 2004, 25(4): 373-391.
[7]   MA J, HU J, FENG J F, et al. Constrained FBS knowledge cell model, representation, and applications for conceptual design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(11): 1773-1786.
[8]   QIN H, WANG H W, JOHNSON A L. A RFBSE model for capturing engineers' useful knowledge and experience during the design process[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44(1): 30-43.
[9]   曹国忠,檀润华,孙建广.基于扩展效应模型的功能设计过程及实现[J].机械工程学报,2009,45(7):157-167. doi:10.3901/jme.2009.07.157
CAO G Z, TAN R H, SUN J G. Process and realization of functional design based on extended-effect model[J]. Journal of Mechanical Engineering, 2009, 45(7): 157-167.
doi: 10.3901/jme.2009.07.157
[10]   LI P, REN Y Z, YAN Y, et al. Conceptual design method driven by product genes[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234(3): 463-478.
[11]   李国喜,吴建忠,张萌,等.基于功能—原理—行为—结构的产品模块化设计方法[J].国防科技大学学报,2009,31(5):75-80. doi:10.3969/j.issn.1001-2486.2009.05.015
LI G X, WU J Z, ZHANG M, et al. Approach to product modular design based on FPBS[J]. Journal of National University of Defense Technology, 2009, 31(5): 75-80.
doi: 10.3969/j.issn.1001-2486.2009.05.015
[12]   LI S, HU J, PENG Y H. Representation of functional micro-knowledge cell (FMKC) for conceptual design[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 569-585.
[13]   STONE R B, WOOD K L. Development of a functional basis for design[J]. Journal of Mechanical Design, 2000, 122(4): 359-370.
[14]   张雷,彭宏伟,刘志峰,等.绿色产品概念设计中的知识重用[J].机械工程学报,2013,49(7):72-79. doi:10.3901/jme.2013.07.072
ZHANG L, PENG H W, LIU Z F, et al. Knowledge reuse in green product concept design process[J]. Journal of Mechanical Engineering, 2013, 49(7): 72-79.
doi: 10.3901/jme.2013.07.072
[15]   UMEDA Y, KONDOH S, SHIMOMURA Y, et al. Development of design methodology for upgradable products based on function‒behavior‒state modeling[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2005, 19(3): 161-182.
[16]   苏开远,徐志刚,朱建峰,等.基于Petri网的废旧产品拆卸设备设计[J].浙江大学学报(工学版),2020,54(9):1795-1804. doi:10.3785/j.issn.1008-973X.2020.09.016
SU K Y, XU Z G, ZHU J F, et al. Dismantling equipment design for scrap product based on Petri net[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1795-1804.
doi: 10.3785/j.issn.1008-973X.2020.09.016
[17]   WU B, ZHAO W, HU H, et al. Conceptual design of intelligent manufacturing equipment based on a multi-source heterogeneous requirement mapping method[J]. IFAC-PapersOnLine, 2022, 55(2): 475-480.
[18]   XIAO Z, ZHOU Z D, SHENG B Y, et al. A new classification analysis of customer requirement information based on quantitative standardization for product configuration[J]. Mathematical Problems in Engineering, 2016, 2016: 7274538.
[19]   ZHENG P, XU X, XIE S Q. A weighted interval rough number based method to determine relative importance ratings of customer requirements in QFD product planning[J]. Journal of Intelligent Manufacturing, 2019, 30(1): 3-16.
[20]   FANG H, LI J, SONG W. A new method for quality function deployment based on rough cloud model theory[J]. IEEE Transactions on Engineering Management, 2020, 69(6): 2842-2856.
[21]   ECER F, PAMUCAR D, MARDANI A, et al. Assessment of renewable energy resources using new interval rough number extension of the level based weight assessment and combinative distance-based assessment[J]. Renewable Energy, 2021, 170: 1156-1177.
[22]   周伟,李赛,王学仁,等.基于FQFD的太阳能无人机设计指标排序方法[J].航空学报,2018,39(2):140-150.
ZHOU W, LI S, WANG X R, et al. Sorting method for design specifications of solar powered UAV based on FQFD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 140-150.
[23]   REDA H, DVIVEDI A. Decision-making on the selection of lean tools using fuzzy QFD and FMEA approach in the manufacturing industry[J]. Expert Systems with Applications, 2022, 192: 116416.
[1] BAI Zhong-hang, SUN Yi-wei, XU Tong, DING Man. Construction of product digital twin model based on design task in conceptual design[J]. Chinese Journal of Engineering Design, 2020, 27(6): 681-689.
[2] LI Di, GUO Peng-wei, Lü Qing-long. Conceptual design method for free form headlamp of  automobile by case-based reasoning[J]. Chinese Journal of Engineering Design, 2014, 21(4): 315-322.
[3] ZHU Chun-Geng, XU Hong, ZHANG Ke, LU Zhang-Ping. Concept design of automatic mechanism for boring hole[J]. Chinese Journal of Engineering Design, 2007, 14(4): 338-341.
[4] WANG Zhong-Xiang, GUO Bao-En, ZHANG Fu-Ying. Study on computer aided quality function deployment concept design expert system model[J]. Chinese Journal of Engineering Design, 2006, 13(3): 135-139.
[5] ZHAN Xiang-Hui, LI Yan, JIA Ai-Jun, SUN Yu-Shuai. Scientific effects base for creative design[J]. Chinese Journal of Engineering Design, 2005, 12(1): 1-6.
[6] FENG Pei-Eng, ZHU Ai-Hua, CHEN Yong, ZHANG Shuai, HE Bin. Establishing knowledge base of product genes for conceptual design
of energy transforming systems
[J]. Chinese Journal of Engineering Design, 2004, 11(3): 113-118.
[7] QIU Lin-Jin, QIU Qing-Ying, HE Bin. Research on knowledge m odeling and its organizational strategy of complex transmitting system[J]. Chinese Journal of Engineering Design, 2002, 9(5): 251-256.
[8] GAO Feng, FENG Pei-en, GAO Yu. Conceptual Design of a Flexible Hydraulic System of the Excavator Robot[J]. Chinese Journal of Engineering Design, 2001, 8(3): 105-108.