Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (4): 438-445    DOI: 10.3785/j.issn.1006-754X.2024.04.121
Robotic and Mechanism Design     
Design and experimental research of deformable mobile robot based on tensegrity structure
Hao ZHANG1(),Qi YANG1,Binbin LIAN1(),Tao SUN1,2
1.School of Mechanical Engineering, Tianjin University, Tianjin 300000, China
2.International Institute for Innovative Design and Manufacturing of Tianjin University in Zhejiang, Shaoxing 311800, China
Download: HTML     PDF(3938KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Mobile robots can replace people into dangerous environments such as fire and earthquake sites for terrain exploration and casualty search, but most robots are difficult to adapt to obstacles, right-angle walls, wall transitions and other complex terrain at the same time, and their control systems are relatively complex, requiring external energy input. Therefore, a deformable mobile robot with multiple functions, relatively simple control and no tethering was designed. Firstly, taking the 2-bar 4-cable tensioning integral structure as the basic unit, the body of the tensioning integral structure which could realize bending deformation was designed. Secondly, based on the analysis of adsorption force and structural parameters, the negative pressure adsorption device was designed and combined with the deformable body to form the overall structure of the robot. Then, the kinematic analysis of the robot was carried out, and the mapping relationship between the robot pose and the motor angle was obtained. Based on this, the robot's gaits of wall surface transition, traversing the narrow space from the wall surface and flipping up steps were planned. Finally, the robot prototype was developed, and the robot movement experiments were carried out according to different terrain, and the rationality of the robot gait planning was verified. The research results provide a certain reference value for the design and manufacture of multi-functional mobile robots.



Key wordstensegrity structure      negative pressure adsorption      deformable robot     
Received: 15 March 2024      Published: 26 August 2024
CLC:  TH 122  
Corresponding Authors: Binbin LIAN     E-mail: 1056801740@qq.com;lianbinbin@tju.edu.cn
Cite this article:

Hao ZHANG,Qi YANG,Binbin LIAN,Tao SUN. Design and experimental research of deformable mobile robot based on tensegrity structure. Chinese Journal of Engineering Design, 2024, 31(4): 438-445.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.121     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I4/438


基于张拉整体结构的可变形移动机器人的设计与实验研究

移动机器人可以代替人进入火灾、地震现场等高危环境进行地形探索及伤员搜寻等工作,然而大多数机器人难以同时适应障碍、直角墙壁、墙面过渡等多种复杂地形,且其控制系统相对复杂,需要外部能源输入。为此,设计了一款具有多种功能、控制相对简单且无系留的可变形移动机器人。首先,将二杆四索张拉整体结构作为基本单元,设计了可实现弯曲变形的张拉整体结构躯干;其次,基于吸附力及结构参数的分析,设计了负压吸附装置,并将它与可变形躯干结合,形成了机器人整体结构;接着,对机器人进行运动学分析,获得了机器人位姿与电机转角的映射关系,并据此规划了机器人墙面过渡、从墙面穿越狭小空间及翻转上台阶的步态;最后,完成了机器人样机的研制,并针对不同地形开展了机器人运动实验,验证了机器人步态规划的合理性。研究结果为多功能移动机器人的设计与制造提供了一定的参考价值。


关键词: 张拉整体结构,  负压吸附,  可变形机器人 
Fig.1 Design schematic of robot deformable body
Fig.2 Force analysis of limit pose of robot on wall surface
Fig.3 Structure of negative pressure adsorption device
Fig.4 Composition of generator set
Fig.5 Overall structure of deformable mobile robot
电机名称电机类型数量/个额定扭矩/(N·m)

额定转速/

(r/min)

鸣志PG2271步进电机20.274 5
朗宇电机直流电机20.09835 000
GA12电机直流电机40.24540
Table 1 Motor model and parameters
Fig.6 Simplified configuration of deformable mobile robot
Fig.7 Simplified unit of deformable mobile robot
Fig.8 Gait sequence of robot climbing from horizontal ground to vertical wall surface
参数步态a步态d步态f
a1b1的关系a1>b1a1<b1a1<b1
m1101
m2011
n1001
n2011
θ5π/4π/8π/4
Table 2 Parameters corresponding to different gaits of robot during climbing
Fig.9 Gait sequence of robot traversing narrow space from vertical wall surface
参数步态a步态b步态c
m1111
m2111
n1101
n2111
Table 3 Parameters corresponding to different gaits of robot during traversing
Fig.10 Gait sequence of robot flipping up steps from horizontal ground
参数步态a步态c步态e
a1b1的关系a1>b1a1<b1a1>b1
m1100
m2010
n1001
n2001
θ5π/4δπ/4
Table 4 Parameters corresponding to different gaits of robot during flipping
Fig.11 Experiment of robot climbing from horizontal ground to vertical wall surface
Fig.12 Experiment of robot traversing narrow space from vertical wall surface
Fig.13 Experiment of robot flipping up steps from horizontal ground
[12]   黄龙,张卫华,陈今茂,等. 爬壁机器人的研究现状与发展趋势[J].机械工程与技术,2021,10(3):345-363. doi:10.12677/met.2021.103040
HUANG L, ZHANG W H, CHEN J M, et al. A review and trend of wall-climbing robots[J]. Mechanical Engineering and Technology, 2021, 10(3): 345-363.
doi: 10.12677/met.2021.103040
[1]   王洋,张小俊,张明路,等.可自适应变曲率立面的分体柔性爬壁机器人设计与分析[J].机械工程学报,2021,57(3):49-58. doi:10.3901/jme.2021.03.049
WANG Y, ZHANG X J, ZHANG M L, et al. Design and analysis of split-flexible wall-climbing robot with adaptive variable curvature facade[J]. Journal of Mechanical Engineering, 2021, 57(3): 49-58.
doi: 10.3901/jme.2021.03.049
[2]   GUO W, ZHONG M, LI M, et al. Design of a six legged wall-climbing robot[C]//2008 IEEE Workshop on Advanced Robotics and Its Social Impacts, Taipei, Taiwan, China, Oct. 17, 2008.
[3]   杨春,罗天洪. 一种新型爬壁机器人越障过程的运动及动力学分析[J].机械传动,2019,43(9):87-92,95.doi:10.16578/j.issn.1004.2539.2019.09.014 .
YANG C, LUO T H. Kinematics and dynamics analysis of obstacle negotiation process for a novel climbing robot[J]. Journal of Mechanical Transmission, 2019,43(9):87-92, 95.
doi: 10.16578/j.issn.1004.2539.2019.09.014
[4]   刘彦伟,王李梦,刘三娃,等. 一种仿尺蠖爬壁机器人设计与分析[J].机械传动,2019,43(8):87-91.doi:10.16578/j.issn.1004.2539.2019.08.016 .
LIU Y W, WANG L M, LIU S W, et al. Design and analysis of an inchworm-inspired wall-climbing robot[J]. Journal of Mechanical Transmission, 2019, 43(8): 87-91.
doi: 10.16578/j.issn.1004.2539.2019.08.016
[5]   栗晋杰. 灾害现场环境下被动自适应机器人运动学分析[D].天津:河北工业大学,2014.
LI J J. Passive adaptive robot kinematics analysis under the disaster site circumstance[D]. Tianjin: Hebei University of Technology, 2014.
[6]   肖世贵,章亚男,沈林勇,等. 一种双体负压吸附爬壁机器人的研究[J].工业控制计算机,2018,31(6):85-87. doi:10.3969/j.issn.1001-182X.2018.06.036
XIAO S G, ZHANG Y N, SHEN L Y, et al. Research on a twin-body negative pressure wall-climbing robot[J]. Industrial Control Computer, 2018, 31(6): 85-87.
doi: 10.3969/j.issn.1001-182X.2018.06.036
[7]   FURUYA H. Concept of deployable tensegrity structures in space application[J]. International Journal of Space Structures, 1992, 7(2): 143-151.
[8]   SHIBATA M, HIRAI S. Rolling Locomotion of deformable tensegrity structure[EB/OL].[2024-03-07]..
[9]   CHUNG Y S, LEE J H, JANG J H, et al. Jumping tensegrity robot based on torsionally pre-strained SMA springs[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40793-40799.
[10]   BÖHM V, ZIMMERMANN K. Vibration-driven mobile robots based on single actuated tensegrity structures[C]//IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6, 2013.
[1] Jianxiong SHEN,Yingyuan LIU,Leqin WANG. Deep learning-based method for parametrized modeling of airfoil[J]. Chinese Journal of Engineering Design, 2024, 31(3): 292-300.
[2] Jinyun CAI,Zhong LIU,Gang WANG,Qingbin ZHAO,Ning AN,Xuwei DU,Dongliang LI,Yuanzhou LI. Optimization design of auxiliary tail rope pulling device for winch mill based on response surface methodology[J]. Chinese Journal of Engineering Design, 2024, 31(2): 178-187.
[3] Xinge LI,Hongyu LIAO,Min ZHOU,Mengmeng CHEN,Liangxi XIE. Innovative design and analysis of swinging spraying mechanism of plastering machine[J]. Chinese Journal of Engineering Design, 2024, 31(2): 248-253.
[4] Kaike YANG,Junpeng LUO,Wenjing MA,Yuanchao GENG,Deen WANG,Qiang YUAN. Research on dynamics simulation and optimization method for high-bandwidth unimorph piezoelectric deformable mirror[J]. Chinese Journal of Engineering Design, 2024, 31(1): 130-136.
[5] Zhenzhong CHEN,Dongyu HUANG,Jiao TIAN,Xiaoke LI,Zihao WU. Structural reliability analysis method based on second order parabolic approximation[J]. Chinese Journal of Engineering Design, 2024, 31(1): 50-58.
[6] Lei ZHANG,Junwei FANG,Jin SU,Chuang CAI,Yunqi ZHAO. Method for generating green conceptual design scheme of electromechanical products based on FSRce model[J]. Chinese Journal of Engineering Design, 2024, 31(1): 10-19.
[7] Jia LI,Meili SONG,Jun FENG,Haibin TANG. Study on impact resistance of bio-inspired thin-walled structure for laser additive manufacturing[J]. Chinese Journal of Engineering Design, 2024, 31(1): 67-73.
[8] Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor[J]. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.
[9] Mingfang CHEN,Liangen HUANG,Yongxia ZHANG,Guoyi YAO. Kinematics analysis and validation of 3-PUU parallel mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(6): 763-778.
[10] Zhonghang BAI,Linjing AI. Research on product ergonomics problem determination method based on functional surface drive and extension tools[J]. Chinese Journal of Engineering Design, 2023, 30(5): 531-544.
[11] Bowei XIE,Mohui JIN,Zhou YANG,Jieli DUAN,Mingyu QU,Jinhui LI. Research on mechanical properties and model parameters of 3D printed TPU material[J]. Chinese Journal of Engineering Design, 2023, 30(4): 419-428.
[12] Xuelin DU,Wenhui YI,Jiahua ZOU,Can ZHOU,Li MAO,Lishi DENG,Ying LIU. Structure design and motion realization of multi-joint snakelike robot[J]. Chinese Journal of Engineering Design, 2023, 30(4): 438-448.
[13] Jindong WANG,Yuhong XIE,Yi CHEN,Zhanyang WU. Biomimetic design of hammer pieces for hammer mill based on beaver incisors[J]. Chinese Journal of Engineering Design, 2023, 30(4): 476-484.
[14] Jun GUAN,Yihua DING,Qingtao GE,Shuai ZHAO,Yang LU,Jie ZHANG. Rapid manufacturing of RFID antennas based on multi-material 3D printing technology[J]. Chinese Journal of Engineering Design, 2023, 30(3): 288-296.
[15] Zhan YANG,Qipeng LI,Wei TANG,Kecheng QIN,Suifan CHEN,Kaidi WANG,Yang LIU,Jun ZOU. Design and analysis of small land-air deformable amphibious robot[J]. Chinese Journal of Engineering Design, 2023, 30(3): 325-333.