Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 50-58    DOI: 10.3785/j.issn.1006-754X.2024.03.305
Reliability and Quality Design     
Structural reliability analysis method based on second order parabolic approximation
Zhenzhong CHEN1(),Dongyu HUANG1,Jiao TIAN1(),Xiaoke LI2,Zihao WU3
1.College of Mechanical Engineering, Donghua University, Shanghai 201620, China
2.College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
3.School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 200135, China
Download: HTML     PDF(1981KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problem that the first order reliability analysis method commonly used in engineering has insufficient accuracy in solving the reliability of limit state function with high nonlinearity, a structural reliability analysis method based on parabolic approximation is proposed on the basis of second order reliability analysis method. Firstly, the first order reliability analysis method was used to iteratively solve the most probable point in standard normal space. Then, the vector composed of the most probable point and the coordinate origin was taken as the new coordinate axis, and the approximate parabola was constructed based on the curvature of the most probable point in each direction of the limit state function to improve the approximate accuracy of the boundary region. Finally, the approximate parabola on the new axis was integrated according to the standard normal distribution probability density to solve the structural reliability probability. The first order reliability method, the second order reliability method and the reliability analysis method based on the second order parabola approximation were compared by four examples to verify the feasibility of the proposed method. The results showed that when facing the reliability problems with high nonlinearity, the accuracy of the first order reliability method was low and the second order reliability method might make solving errors in special cases, while the parabolic approximate integral method could effectively improve the accuracy of structural reliability analysis and ensure the stability of the solution. The research results can provide reference for reliability analysis of complex structures.



Key wordsfirst order reliability      second order reliability      parabolic approximation      reliability analysis     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TH 122  
Corresponding Authors: Jiao TIAN     E-mail: zhenzh.chen@dhu.edu.cn;tianjiao@dhu.edu.cn
Cite this article:

Zhenzhong CHEN,Dongyu HUANG,Jiao TIAN,Xiaoke LI,Zihao WU. Structural reliability analysis method based on second order parabolic approximation. Chinese Journal of Engineering Design, 2024, 31(1): 50-58.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.305     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/50


基于二阶抛物线近似的结构可靠性分析方法

针对工程中常用的一阶可靠性分析方法在求解非线性程度较高的极限状态函数的可靠性时精度不足的问题,在二阶可靠性分析方法的基础上提出了一种基于抛物线近似的结构可靠性分析方法。首先,采用一阶可靠性分析方法迭代求解标准正态空间下的最大可能点。然后,以最大可能点与坐标原点构成的向量作为新坐标轴,基于极限状态函数最大可能点各方向上的曲率构建近似抛物线,以提高边界区域的近似精度。最后,根据标准正态分布概率密度对新坐标轴上的近似抛物线进行积分,以求解结构的可靠概率。通过4个算例来比较一阶可靠性方法、二阶可靠性方法与基于二阶抛物线近似的可靠性分析方法,以验证所提出方法的可行性。结果表明,当面对非线性程度较高的可靠性问题时,一阶可靠性方法的求解精度较低,二阶可靠性方法在特殊情况下会发生求解错误,而通过抛物线近似积分的方法可有效提高结构可靠性分析的精度并保证求解的稳定性。研究结果可为复杂结构的可靠性分析提供参考。


关键词: 一阶可靠性,  二阶可靠性,  抛物线近似,  可靠性分析 
Fig.1 Reliability index and MPP in two-dimensional reliability analysis
Fig.2 Parabola fitting and rotation of limit state functions in two-dimensional reliability analysis
Fig.3 Schematic of feasible and failure domain division in two-dimensional reliability analysis
Fig.4 Limit state function of example 1
参数b系数cFORMSORM本文方法MCS法
2-0.250.977 2500.948 8290.948 827
0.010.977 6910.977 7740.977 783
0.10.980 7720.981 3770.981 457
0.30.984 6610.985 6580.985 667
10.989 8250.990 8300.990 851
50.995 0350.995 6250.995 632
3-0.250.998 6500.994 8630.993 330
0.010.998 6880.998 6940.998 695
0.10.998 9320.998 9560.998 957
0.30.999 1930.999 2270.999 226
10.999 4890.999 5190.999 516
50.999 7570.999 7740.999 773
Table 1 Reliability analysis results of example 1
Fig.5 Schematic of circular axis under random torque
Fig.6 Reliability analysis results of example 2
变量均值标准差分布类型
x1606.0正态
x22 00074.0对数正态
x3241.2对数正态
x45010.0极值Ⅰ型
Table 2 Random variables distribution of example 3
方法可靠概率可靠度指标β相对误差/%
MCS法0.956 41.709 8
FORM0.961 01.761 80.481 0
SORM0.957 11.717 70.073 2
本文方法0.956 51.711 70.001 0
Table 3 Reliability analysis results of example 3
Fig.7 Schematic of roof truss structure
变量单位均值标准偏差分布类型
qN/m20 0001 400正态
Lm120.12正态
Asm29.82×10-45.985?2×10-5正态
Acm20.040.004 8正态
EsPa1.0×10116.0×109正态
EcPa2.0×10101.2×109正态
Table 4 Random variables distribution of example 4
方法可靠概率可靠度指标β相对误差/%
MCS法0.990 52.344 5
FORM0.992 32.421 20.181 0
SORM0.991 72.397 30.128 1
本文方法0.991 62.392 00.111 1
Table 5 Reliability analysis results of example 4
[1]   陈振中.基于可靠性的设计优化中精确解耦与高效抽样技术研究[D].武汉:华中科技大学,2013:1-2.
CHEN Z Z. Research on precise decoupling and efficient sampling technologies for reliability based design optimization[D]. Wuhan: Huazhong University of Science and Technology, 2013: 1-2.
[2]   MENG Z, ZHAO J Y, CHEN G H, et al. Hybrid uncertainty propagation and reliability analysis using direct probability integral method and exponential convex model[J]. Reliability Engineering & System Safety, 2022, 228: 108803.
[3]   SHEN C, RUAN X D, LIU T X, et al. A dimension-wise analysis driven active learning paired-Kriging (DWA-ALK) method for the hybrid reliability analysis[J]. Structures, 2023, 47: 939-952.
[4]   ZHU Z F, DU X P. Reliability analysis with Monte Carlo simulation and dependent Kriging predictions[J]. Journal of Mechanical Design, 2016, 138(12): 121403.
[5]   XIONG Y, SAMPATH S. A fast-convergence algorithm for reliability analysis based on the AK-MCS[J]. Reliability Engineering & System Safety, 2021, 213: 107693.
[6]   GASPAR B, NAESS A, LEIRA B J, et al. System reliability analysis by Monte Carlo based method and finite element structural models[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(3): 031603.
[7]   HOHENBICHLER M, RACKWITZ R. First-order concepts in system reliability[J]. Structural Safety, 1982, 1(3): 177-188.
[8]   DU X, GUO J, BEERAM H. Sequential optimization and reliability assessment for multidisciplinary systems design[J]. Structural and Multidisciplinary Optimization, 2008, 35: 117-130.
[9]   ARMEN D K, LIN H Z, HWANG S J. Second-order reliability approximations[J]. Journal of Engineering Mechanics, 1987, 113(8): 1208-1225.
[10]   MENG Z, ZHOU H, HU H, et al. Enhanced sequential approximate programming using second order reliability method for accurate and efficient structural reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 62: 562-579.
[11]   HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111-121.
[12]   RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489-494.
[13]   薛自然,冯伟,王卫军,等.基于一次二阶矩法的折臂机构运动可靠性分析[J].起重运输机械,2022(19):8-13.
XUE Z R, FENG W, WANG W J, et al. Reliability analysis of the movement of the jib fold mechanism based on the first-order second-moment method[J]. Hoisting and Conveying Machinery, 2022(19): 8-13.
[14]   郑财,黄贤振,胡明伟,等.三轴数控机床加工精度可靠性分析[J].机床与液压,2017,45(15):180-183. doi:10.3969/j.issn.1001-3881.2017.15.042
ZHENG C, HUANG X Z, HU M W, et al. Three axis NC machine tool machining accuracy reliability analysis[J]. Machine Tool & Hydraulics, 2017, 45(15): 180-183.
doi: 10.3969/j.issn.1001-3881.2017.15.042
[15]   巴振宁,王鸣铄,梁建文,等.改进的一次二阶矩计算埋地管道失效概率方法及其应用[J].安全与环境学报,2021,21(6):2371-2377.
BA Z N, WANG M S, LIANG J W, et al. Improved method for calculating failure probability of buried pipeline based on first order second moment and its application[J]. Journal of Safety and Environment, 2021, 21(6): 2371-2377.
[16]   CHEN Z Z, WU Z H, LI X K, et al. An accuracy analysis method for first-order reliability method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(12): 4319-4327.
[17]   BREITUNG K. Asymptotic approximations for multinormal integrals[J]. Journal of Engineering Mechanics, 1984, 110(3): 357-366.
[18]   BREITUNG K. Asymptotic approximations for probability integrals[J]. Probabilistic Engineering Mechanics, 1989, 4(4): 187-190.
[19]   CAI G Q, ELISGAKOFF I. Refined second-order reliability analysis[J]. Structural Safety, 1994, 14(4): 267-276.
[20]   XIA Y, HU Y Y, TANG F, et al. An Armijo-based hybrid step length release first order reliability method based on chaos control for structural reliability analysis[J]. Structural and Multidisciplinary Optimization, 2023, 66: 77.
[1] WU Jiang. Parameter estimation method of mixed Weibull distribution in reliability analysis of aircraft[J]. Chinese Journal of Engineering Design, 2015, 22(1): 26-29.
[2] ZHANG Wen-tao,ZHANG You-peng,SU Hong-sheng,YANG Lei. Reliability analysis on ATP system of CTCS-3 based on dynamic fault tree[J]. Chinese Journal of Engineering Design, 2014, 21(1): 18-26.
[3] ZHENG Yan, CHENG Wen-Ming, CHENG Yue, WU Xiao. Nonprobabilistic reliability analysis based on support vector machines[J]. Chinese Journal of Engineering Design, 2011, 18(5): 327-331.
[4] JIN Ya-Juan, ZHANG Yi-Min, ZHANG Yan-Lin, WANG Xin-Gang. Reliability analysis of turbine disk crack propagation life with arbitrary distribution parameters[J]. Chinese Journal of Engineering Design, 2009, 16(3): 196-199.
[5] SU Chang-Qing, ZHANG Yi-Min, ZHAO Qun-Chao. Reliability analysis for rubbing in rotor-bearing system with pedestal looseness[J]. Chinese Journal of Engineering Design, 2008, 15(5): 347-350.