Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 42-49    DOI: 10.3785/j.issn.1006-754X.2024.03.302
Digital and Intellectualized Design     
Working stage identification of excavators based on information fusion and multi-granularity cascaded forest model
Deying SU(),Shaojie WANG,Xiangjian BU,Hongyan RAO,Liang HOU()
Pen -Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
Download: HTML     PDF(4480KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

An intelligent recognition approach was proposed, which was based on information fusion and a multi-granularity cascaded forest model (IFMCFM) to tackle the challenge of low reliability in excavator working stage identification methods. Information fusion technology was utilized to merge the category probability vector of the excavator working stage with high-importance features, thereby forming new identification features. The novel features were subsequently fed into the cascaded forest model, which was trained using different proportions of the training set. Subsequent analysis was carried out on the identification results. The identification outcomes of IFMCFM were compared with those of other models, including DAGSVM (directed acyclic graph support vector machine), PCA-SVM (support vector machine based on principal component analysis), LIBSVM (library for support vector machines), and LSTM (long short-term memory). The research findings revealed that the recognition accuracy, recall, and F1 (harmonic average of accuracy and recall) index of IFMCFM were 95.00%, 95.17%, and 95.02% respectively, indicating good recognition performance when the training set ratio was 80%. In comparison to the other identification models, the highest accuracy and reliability were exhibited by IFMCFM. IFMCFM can effectively identify the operation stage of excavators and has high application value.



Key wordsexcavator      working stages      intelligent identification      information fusion      multi-granularity cascade forest model     
Received: 28 October 2023      Published: 04 March 2024
CLC:  TD 63+1  
Corresponding Authors: Liang HOU     E-mail: 19920190154058@stu.xmu.edu.cn;hliang@xmu.edu.cn
Cite this article:

Deying SU,Shaojie WANG,Xiangjian BU,Hongyan RAO,Liang HOU. Working stage identification of excavators based on information fusion and multi-granularity cascaded forest model. Chinese Journal of Engineering Design, 2024, 31(1): 42-49.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.302     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/42


基于信息融合和多粒度级联森林模型的挖掘机作业阶段智能识别

为了解决挖掘机作业阶段识别方法可靠性较低的问题,提出了一种基于信息融合和多粒度级联森林模型(information fusion and multi-granularity cascade forest model,IFMCFM)的智能识别方法。利用信息融合技术将挖掘机作业阶段的类别概率向量与高重要度特征进行融合,形成新的识别特征;将新特征输入级联森林模型,采用不同比例的训练集对模型进行训练并对识别结果进行分析;将IFMCFM的识别结果与DAGSVM(directed acyclic graph support vector machine,有向无环图支持向量机)、PCA-SVM(support vector machine based on principal component analysis,基于主成分分析的支持向量机)、LIBSVM(library for support vector machines,支持向量机库)和LSTM(long short-term memory,长短期记忆)的识别结果进行对比。研究结果表明:当训练集比例为80%时,IFMCFM的识别准确率、召回率和F1(精确度和召回率的调和平均数)指标分别为95.00%,95.17%和95.02%,识别效果较优;相比于其他识别模型,IFMCFM的识别准确性和可靠性最高。IFMCFM可以有效地识别挖掘机作业阶段,具有较高的应用价值。


关键词: 挖掘机,  作业阶段,  智能识别,  信息融合,  多粒度级联森林模型 
Fig.1 Experiment on data collection of excavator operation
序号通道信号序号通道信号
1主泵1出口压力14斗杆先导压力
2主泵2出口压力15铲斗先导压力
3动臂大腔压力16回转先导压力
4动臂小腔压力17主泵出口油流量
5斗杆大腔压力18回转马达流量
6斗杆小腔压力19铲斗角度
7铲斗大腔压力20斗杆角度
8铲斗小腔压力21动臂角度
9回转马达进出口压力22动臂位移
10动臂先导压力23斗杆位移
11斗杆先导压力24铲斗位移
12铲斗先导压力25发动机转速
13动臂先导压力
Table 1 Operation data information of excavators
Fig.2 Main pump outlet pressure and boom chamber pressure before and after data filtering
Fig.3 Division results of main pump 1 pressure and bucket cylinder pressure
序号重要度通道信号对应特征
10.142动臂先导压力均值
20.090斗杆小腔压力均值
30.074斗杆先导压力均值
40.074铲斗先导压力均方根值
50.073回转马达流量峰值
60.073铲斗先导压力标准差
70.072铲斗先导压力峰值
80.072动臂角度峰峰值
90.043动臂角度均方根值
Table 2 Screening results of excavator operation data characteristics
Fig.4 Process of data fusion for excavator operation
Fig.5 Principle of multi-granularity cascade forest model
Fig.6 Original data corresponding to 9 important operational data features of excavators
结构超参数量值
多粒度扫描结构森林分类器数量2个
决策树数量100棵
滑动窗口大小2, 4, 6维
滑动步长1
级联森林结构森林分类器数量4个
决策树数量100棵
Table 3 Parameters of multi-granularity cascade forest model
训练集比例准确率召回率F1
8095.0095.1795.02
6092.5092.5392.50
4090.9590.9690.95
2088.3988.4088.38
1086.9887.0286.97
Table 4 Recognition results of excavator operation stages under different training set proportions
评价指标挖掘提升回转卸料空斗返回挖掘准备
精准率96.4390.0093.1093.30100.00
召回率96.4396.4396.4392.8695.17
F196.4393.1094.7494.5596.30
Table 5 Identification results of IFMCFM model
模型

评价

指标

挖掘

提升

回转

卸料

空斗

返回

挖掘

准备

DAGSVM精准率95.6593.8594.8592.8694.85
召回率92.3290.5693.5293.2092.55
F193.9692.1894.1893.0393.69
PCA-SVM精准率90.0589.0288.4590.1389.14
召回率90.1288.6585.5288.8387.68
F190.0888.8386.9689.4888.40
LIBSVM精准率99.0596.0289.4592.1393.14
召回率90.1298.0590.1285.4399.08
F194.1397.2589.0588.4596.45
LSTM精准率95.0092.0093.0093.0093.00
召回率84.0089.0093.0091.0098.00
F189.0090.0093.0092.0095.00
IFMCFM精准率96.4390.0093.1096.30100.00
召回率96.4396.4396.4392.8692.86
F196.4393.1094.7494.5596.30
Table 6 Identification results of each model
[1]   高宇, 冯培恩, 彭贝, 等. 液压挖掘机分阶段功率匹配控制技术[J]. 哈尔滨工程大学学报, 2017, 38(9): 1461-1469. doi:10.11990/jheu.201605053
GAO Y, FENG P E, PENG B, et al. Stage-based power matching control of hydraulic excavator[J]. Journal of Harbin Engineering University, 2017, 38(9): 1461-1469.
doi: 10.11990/jheu.201605053
[2]   BAO R, SADEGHI M A, GOLPARVAR F M. Characterizing construction equipment activities in long video sequences of earthmoving operations via kinematic features [C]// Construction Research Congress. San Juan, May 31- June. 2, 2016.
[3]   KIM J, CHI S, SEO J. Interaction analysis for vision-basedactivity identification of earthmoving excavators and dumptrucks [J]. Automation in Construction, 2018, 87(3): 297-308.
[4]   FANG W, DING L, ZHONG B, et al. Automated detection of workers and heavy equipment on construction sites: a convolutional neural network approach [J]. Advanced Engineering Informatics, 2018, 37: 139-149.
[5]   柳齐. 基于动作序列识别的挖掘机智能节能方法研究[D]. 厦门: 华侨大学, 2014.
LIU Q. Intelligent energy-saving method research of excavator based on identifying the sequence of actions [D]. Xiamen: Huaqiao University, 2014.
[6]   AHN C R, LEE S H, PEÑA M F. Application of low-cost accelerometers for measuring the operational efficiency of a construction equipment fleet [J]. Journal of Computing in Civil Engineering, 2015, 29(2): 04014042.
[7]   冯培恩, 彭贝, 高宇, 等. 液压挖掘机作业循环阶段的智能识别[J]. 浙江大学学报(工学版), 2016, 50(2): 209-217.
FENG P E, PENG B, GAO Y, et al. Intelligent identification for working-cycle stages of hydraulic excavator [J]. Journal of Zhejiang University(Engineering Edition), 2016, 50(2): 209-217.
[8]   黄杰, 王东, 王新晴, 等. 液压挖掘机作业循环状态智能识别方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1663-1673.
HUANG J, WANG D, WANG X Q, et al. Intelligent recognition method for working-cycle state of hydraulic excavator[J]. Journal of Zhejiang University(Engineering Edition), 2019, 53(9): 1663-1673.
[9]   SHI Y, XIA Y, ZHANG Y, et al. Intelligent identification for working-cycle stages of excavator based on main pump pressure [J]. Automation in Construction, 2020, 109: 102991.
[10]   SHI Y, XIA Y, LUO L, et al. Working stage identification of excavators based on control signals of operating handles [J]. Automation in Construction, 2021, 130: 103873.
[11]   HOU L, LIN H, WANG S, et al. Feature-based sensor configuration and working-stage recognition of wheel loader[J]. Automation in Construction, 2022, 141: 104401.
[12]   单增海, 李志远, 张旭, 等. 基于多传感器信息融合和多粒度级联森林模型的液压泵健康状态评估[J]. 中国机械工程, 2021, 32(19): 2374-2382. doi:10.3969/j.issn.1004-132X.2021.19.013
SHAN Z H, LI Z Y, ZHANG X, et al. Health status assessment of hydraulic pumps based on multi-sensor information fusion and multi-grained cascade forest model[J]. China Mechanical Engineering, 2021, 32(19): 2374-2382.
doi: 10.3969/j.issn.1004-132X.2021.19.013
[13]   于晨晖, 王浩名, 李一, 等. 基于深度森林的高压断路器弹簧机构状态识别[J]. 高压电器, 2023, 59(2): 37-43, 51.
YU C H, WANG H M, LI Y, et al. State identification of spring operating mechanism for high voltage circuit breaker based on deep forest [J]. High Voltage Apparatus, 2023, 59(2): 37-43, 51.
[14]   杨晓晖, 张圣昌. 基于多粒度级联孤立森林算法的异常检测模型[J]. 通信学报, 2019, 40(8): 133-142. doi:10.11959/j.issn.1000-436x.2019132
YANG X H, ZHANG S C. Anomaly detection model based on multi-grained cascade isolation forest algorithm [J]. Journal on Communications, 2019, 40(8): 133-142.
doi: 10.11959/j.issn.1000-436x.2019132
[15]   苏赋, 朱威西, 马磊. 基于改进多粒度级联森林的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2021, 36(2): 654-661. doi:10.6038/pg2021EE0131
SU F, ZHU W X, MA L. Research and application of logging lithology identification method based on IgcForest [J]. Progress in Geophysics, 2021, 36(2): 654-661.
doi: 10.6038/pg2021EE0131
[1] Sensen WEI,Changqing DU,Bin ZOU,Yubing XU. Research on phased control technology of electrically controlled positive flow excavator[J]. Chinese Journal of Engineering Design, 2023, 30(6): 717-727.
[2] Xue-ping LI,Yan RAN. Key meta-action identification for mechanical product with multi-criteria fuzzy association[J]. Chinese Journal of Engineering Design, 2022, 29(5): 527-536.
[3] WANG Ya-kun, REN Jia-jun, LI Ai-feng, MENG Hao-nan. Layout optimization design of operation interface in mining excavator cab[J]. Chinese Journal of Engineering Design, 2020, 27(4): 469-477.
[4] LU Feng-yi, ZHAO Ke-yuan, XU Ge-ning, QI Qi-song. Reliability assessment of small sample based on multiple source information fusion and fuzzy fault tree[J]. Chinese Journal of Engineering Design, 2017, 24(6): 609-617.
[5] WANG Chun-Xiang, MENG Fan-Juan. The rapid reverse design of excavator bucket teeth with both complex inner cavity and outer shapes[J]. Chinese Journal of Engineering Design, 2012, 19(6): 460-464.
[6] WANG Chun-Xiang, LI Le, WANG Jian-Guo. Geometric reverse resolution and model reconstruction of excavator dipper teeth based on feature extraction[J]. Chinese Journal of Engineering Design, 2010, 17(3): 211-214.
[7] GAO Feng, FENG Pei-en, GAO Yu. Conceptual Design of a Flexible Hydraulic System of the Excavator Robot[J]. Chinese Journal of Engineering Design, 2001, 8(3): 105-108.