Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 31-41    DOI: 10.3785/j.issn.1006-754X.2024.03.301
Digital and Intellectualized Design     
Construction and application on high-performance hydraulic cylinder digital intelligent design and manufacturing platform
Wei ZHANG1,3(),Xiaoping HU2(),Hongtao TANG1,Yanxiang ZHANG3,Xixing LI4
1.School of Mechanical & Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
2.Science &Technology Cooperation Center, Wuhan University of Technology, Wuhan 430070, China
3.Shaoguan Hydraulic Parts Factory Co. , Ltd. , Shaoguan 512000, China
4.School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
Download: HTML     PDF(9465KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The production process of high-performance hydraulic cylinders is flexible and has a long processing cycle. Its production belongs to a typical non-standard, single piece, small batch discrete manufacturing model, which is difficult to optimize and control in design and production. A high-performance intelligent design and manufacturing platform for hydraulic cylinders was designed to address the issues of low software integration and high coupling when using digital design and process control software for hydraulic cylinder production enterprises. Through reconfigurable middleware technology, the platform integrated software interfaces such as AutoCAD and SolidWorks. While integrating neural network algorithms and multi-objective optimization techniques, digital design and production control modules such as graph library, working hour prediction, and flexible process planning were constructed. The digital design and manufacturing platform can achieve full lifecycle control of the design and manufacturing process, providing strong support for manufacturing enterprises to achieve digital transformation.



Key wordshigh-performance hydraulic cylinders      discrete manufacturing      digital intelligence      industrial software     
Received: 20 October 2023      Published: 04 March 2024
CLC:  TP 391  
Corresponding Authors: Xiaoping HU     E-mail: waynezhang@whut.edu.cn;834601284@qq.com
Cite this article:

Wei ZHANG,Xiaoping HU,Hongtao TANG,Yanxiang ZHANG,Xixing LI. Construction and application on high-performance hydraulic cylinder digital intelligent design and manufacturing platform. Chinese Journal of Engineering Design, 2024, 31(1): 31-41.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.301     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/31


高性能液压缸数智化设计与制造平台的构建与应用

高性能液压缸的生产工艺柔性大,加工周期长,其生产属于典型的非标、单件小批量离散型制造模式,在设计和生产中难以优化和控制。针对液压缸生产企业在使用数字化设计和流程管控软件时软件集成度低和耦合度高的问题,设计了一种高性能液压缸数智化设计与制造平台。通过可重构中间件技术,该平台集成了AutoCAD、SolidWorks等软件接口,并在融合神经网络算法和多目标优化技术的同时,构建了图库、工时预测、柔性工艺规划等数字化设计和生产管控模块。该数智化设计与制造平台可以实现设计与制造过程的全生命周期管控,为制造企业实现数智化转型提供有力支撑。


关键词: 高性能液压缸,  离散制造,  数智化,  工业软件 
Fig.1 Extraction of BOM information
Fig.2 Flow of cyclic recursive algorithm
Fig.3 CAD drawing library of hydraulic cylinder products
Fig.4 SolidWorks graphic library of hydraulic cylinder products
Fig.5 Various types of hydraulic cylinders
Fig.6 Flowchart of ABC-GRNN algorithm
Fig.7 Process of work hour forecasting
Fig.8 Forecasting system of work hour
符号说明
A工件数量
M机器数量
GI工件I的可选工艺路线数
PIL工件I在第L条工艺路线上的工序数量
OIJL工件I在第L条工艺路线上的第J个工序
K工序OIJL 对应的可选加工机器
WK机器K加工时的额定功率
WT工件在转运时搬运机器的额定功率
tIJLK工序OIJL 在机器K上的加工时间
Ts, IJLK工序OIJL 在机器K上的开始加工时间
Tp, I工件I的工序加工时间
Tt, K从机器K到机器K+1上的转运时间
Tt, I工件I在各机器间的总运转时间
T I工件I总加工时间
Cs, I工件I产生的总碳排放量
Cm, I工件I加工产生的碳排放量
Ct, I工件I在机器间转运时产生的碳排放量
B电力标煤换算系数
EF电能碳排放系数
XIL工件I选择的是第L条工艺路线,XIL =1;若不是,XIL =0
ZIJLK工序OIJL 在机器K上加工,ZIJLK =1;若不是,ZIJLK =0
Table 1 Explanation of process planning variables and symbols
Fig.9 Solution process for multi-objective flexible process planning problem based on improved Jaya algorithm
Fig.10 Solution process for multi-objective flexible process planning problem based on improved Jaya algorithm
Fig.11 SCADA interface of hydraulic cylinder intelligent platform
Fig.12 MES interface of hydraulic cylinder intelligence platform
Fig.13 Production scheduling monitoring interface of hydraulic cylinder intelligent platform
Fig.14 Process planning interface of hydraulic cylinder intelligent platform
[1]   王博.液压缸基础零件制造车间MES的研究与设计[D]. 南京: 南京理工大学,2017:2-3.
WANG B. Research and design of MES in manufacturing workshop of hydraulic cylinder parts [D]. Nanjing: Nanjing University of Science and Technology, 2017: 2-3.
[2]   刘晨.液压油缸总装生产线规划与仿真研究[D]. 秦皇岛: 燕山大学,2014:7-8.
LIU C. Planning and simulation study of hydraulic oil cylinders assembly line [D]. Qinhuangdao: Yanshan University, 2014: 7-8.
[3]   王长江. 液压元件及核心零部件行业分析报告[J].今日工程机械,2021(4):27-31. doi:10.3969/j.issn.1671-9018.2021.04.007
WANG C J. Industry analysis report of hydraulic components and core components [J]. Construction Machinery Today, 2021(4): 27-31.
doi: 10.3969/j.issn.1671-9018.2021.04.007
[4]   李宏宝. 中国挖掘机械及其核心液压件市场分析[J].液压气动与密封,2020,40(1):101-103. doi:10.3969/j.issn.1008-0813.2020.01.027
LI H B. Market analysis of excavating machinery and its core hydraulic components in China [J]. Hydraulics Pneumatics & Seals, 2020, 40(1): 101-103.
doi: 10.3969/j.issn.1008-0813.2020.01.027
[5]   杨华勇.智能制造与智能液压件的一些探索[J].液压与气动,2020(1):1-9. doi:10.11832/j.issn.1000-4858.2020.01.001
YANG H Y. Review of intelligent manufacturing and intelligent hydraulic components [J]. Chinese Hydraulics & Pneumatics, 2020(1): 1-9.
doi: 10.11832/j.issn.1000-4858.2020.01.001
[6]   FENG Y J. Integration model based on the integration of “CAD/CAPP/PLM/ERP” framework research [J]. Chemical Engineering Transactions (CET Journal), 2015, 46: 1111-1116.
[7]   MLECZKO J. Integration of CAD/PDM and ERP systems in practice [J]. Applied Mechanics and Materials, 2015, 791: 26-33.
[8]   王林苑. 铸造CAE数值模拟系统与CAD及ERP系统接口技术的研究[D]. 武汉:华中科技大学,2019:13-14. doi:10.30919/esmm5f239
WANG L Y. Research on interface technology of connecting foundry CAE numerical simulation system and CAD and ERP system [D]. Wuhan: Huazhong University of Science and Technology, 2019: 13-14.
doi: 10.30919/esmm5f239
[9]   秦红斌,孙齐,唐红涛,等.面向ERP与CAD集成的液压缸产品图库管理系统研究[J].机床与液压,2022, 50(13):102-106. doi:10.3969/j.issn.1001-3881.2022.13.019
QIN H B, SUN Q, TANG H T, et al. Research on the drawing management system of hydraulic cylinder product oriented to the integration of ERP and CAD [J].Machine Tool & Hydraulics, 2022, 50(13): 102-106.
doi: 10.3969/j.issn.1001-3881.2022.13.019
[10]   陈朝猛,王立洋,王元青.基于最小二乘法的自动钻铆工时预测研究[J].计算机技术与发展,2021,31(3): 206-210. doi:10.3969/j.issn.1673-629X.2021.03.036
CHEN C M, WANG L Y, WANG Y Q. Study on prediction of man-hour of automatic drilling and riveting based on least square method [J]. Computer Technology and Development, 2021, 31(3): 206-210.
doi: 10.3969/j.issn.1673-629X.2021.03.036
[11]   邱晓静. 基于神经网络的船舶设计工时测算方法实践[J]. 船舶标准化与质量,2020(1):21-25. doi:10.3969/j.issn.1007-9750.2020.01.006
QIU X J. Application of calculation method of ship design man hour based on neural network [J]. Shipbuilding Standardization & Quality, 2020(1): 21-25.
doi: 10.3969/j.issn.1007-9750.2020.01.006
[12]   刘俊玮. 基于数据分析的产品工时定额研究[D].上海:上海交通大学,2018:36-38. doi:10.1007/s12204-018-1946-5
LIU J W. Study the time quota of product based on data analysis [D]. Shanghai: Shanghai Jiaotong University, 2018: 36-38.
doi: 10.1007/s12204-018-1946-5
[13]   HUR M, LEE S, KIM B, et al. A study on the man-hour prediction system for shipbuilding [J]. Journal of Intelligent Manufacturing, 2015, 26(6): 1267-1279.
[14]   GOMEZ C D A, DIAZ R R E, CANTU O F J, et al. Data analysis and forecasting of the COVID-19 spread: a comparison of recurrent neural networks and time series models [J]. Cognit Comput, 2021, 13(2): 1-12.
[15]   BOUZID M, ALAYA I, TAGINA M. A new artificial bee colony algorithm using a gradual weight method for the bi-objective traveling salesman problems [J]. Evolutionary Intelligence, 2022, 15(3): 2077-2088.
[16]   杨佩莉,宋栓军,石雯丽.基于人工蜂群算法的柔性工艺规划方法研究[J].价值工程, 2016, 35(25): 298-300.
YANG P L, SONG S J, SHI W L. Research on the flexible process planning based on artificial bee colony algorithm [J]. Value Engineering, 2016, 35(25): 298-300.
[17]   段建国,王彦森,谢楠. 基于时间向量的多工序加工系统工艺路线重组建模与优化[J].计算机集成制造系统,2020, 26(7): 1814-1823.
DUAN J G, WANG Y S, XIE N. Modeling and optimization of process route reconfiguration in multi-stage machining system based on time vector [J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1814-1823.
[18]   ZHANG Y J, GE L L. Method for process planning optimization with energy efficiency consideration [J]. International Journal of Advanced Manufacturing Technology, 2015, 22(9): 2197-2207.
[19]   YI Q, LI C, ZHANG X, et al. An optimization model of machining process route for low carbon manufacturing [J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5): 1181-1196.
[20]   程海琴,曹华军,李洪丞,等.基于碳效益的零部件制造工艺决策模型及应用[J].计算机集成制造系统,2013, 19(8): 2018-2025.
CHENG H Q, CAO H J, LI H C, et al. Decision-making model of mechanical components based on carbon benefit and its application[J]. Computer Integrated Manufacturing Systems, 2013, 19(8): 2018-2025.
[21]   李聪波,沈欢,李玲玲,等.面向能耗的多工艺路线柔性作业车间分批优化调度模型[J].机械工程学报,2017, 53(5):12-23. doi:10.3901/jme.2017.05.012
LI C B, SHEN H, LI L L, et al. A batch splitting flexible job shop scheduling model for energy saving under alternative process plans [J]. Journal of Mechanical Engineering, 2017, 53(5): 12-23.
doi: 10.3901/jme.2017.05.012
[22]   RAO R V, MORE K C, TALER J, et al. Dimensional optimization of a micro-channel heat sink using Jaya algorithm [J]. Applied Thermal Engineering, 2016, 103(25): 572-582.
[23]   唐红涛,张伟,张雁翔.面向高端液压缸离散制造的PLM/ERP/MES全生命周期管控平台构建与应用研究[J].机床与液压,2022,51(1):63-70.
TANG H T, ZHANG W, ZHANG Y X. Research on the PLM/ERP/MES information integration platform construction and application for high-end hydraulic cylinder discrete manufacturing [J]. Machine Tool & Hydraulics, 2022, 51(1): 63-70.
[1] LAI Quan-bao, TAO Qing, HU Yu-ge, MENG Qing-feng. Multi-gesture accurate recognition based on artificial fish swarm algorithm-extreme learning machine[J]. Chinese Journal of Engineering Design, 2021, 28(6): 671-678.
[2] NI Zi-jian, LI Wen-qiang, TANG Zhong. Ontology semantic mining and functional semantic retrieval method based on network representation learning[J]. Chinese Journal of Engineering Design, 2021, 28(5): 539-547.
[3] WANG Hong-shen, LIU Min, QIANG Hui-ying. Three-dimensional model classification and retrieval algorithm based on polar radius surface moment and HMM[J]. Chinese Journal of Engineering Design, 2021, 28(4): 407-414.
[4] WANG Chun-xiang, JI Kang-hui, WANG Yao, LIU Liu. Review of research on segmentation algorithm in rapid prototyping technology[J]. Chinese Journal of Engineering Design, 2021, 28(4): 399-406.
[5] XU Yong-ming, TANG Yi-fan, ZHANG Sheng, SHI Jian-xun, YU Yun-zhong, ZHANG Zheng. Simulation and experimental research on automatic straightening of power cable[J]. Chinese Journal of Engineering Design, 2021, 28(3): 329-334.
[6] YAN Bao-ming, PAN Wei-jie, Lü Jian, WANG Yi, ZHAO Ze-yu. Prediction of natural gesture interaction time for VR placement task[J]. Chinese Journal of Engineering Design, 2021, 28(3): 296-304.
[7] WANG Chun-xiang, HAO Lin-wen, WANG Yao, ZHOU Guo-yong, JI Kang-hui, LIU Liu. Automatic repair of scattered point cloud hole based on GA-BP neural network[J]. Chinese Journal of Engineering Design, 2021, 28(2): 155-162.
[8] ZHANG Shi-miao, SHAO Hong-yu, CHEN Chen, CHEN Yong-liang. Service matching method for surplus sheet material resource in cloud manufacturing environment[J]. Chinese Journal of Engineering Design, 2021, 28(2): 121-131.
[9] CHEN Yang, REN Cheng-zu, DENG Xiao-fan, CHEN Guang, JIN Xin-min. Research on rotating motion of cylindrical roller based on double-disc straight groove grinding[J]. Chinese Journal of Engineering Design, 2021, 28(2): 179-189.
[10] YAO Shou-wen, HU Zi-ran, LIU Bo-wen, DING Jia, CHANG Fu-xiang, LI Li-hui. Virtual reality aided maintenance training based on real-time assembly state perception and intuitive interaction[J]. Chinese Journal of Engineering Design, 2021, 28(1): 14-24.
[11] DENG Xiao-fan, REN Cheng-zu, CHEN Yang, CHEN Guang, CAI Zhi-jie, HE Ying-lun. Research on material selection of lapping tools for double-disc and linear-groove lapping method based on friction and wear experiment[J]. Chinese Journal of Engineering Design, 2020, 27(6): 720-728.
[12] WANG Wei, ZHANG Kai-yan, LIU Ya-chuan, HUANG Yu-chun. Research on two-step alignment method for 3-D point cloud and its application[J]. Chinese Journal of Engineering Design, 2020, 27(5): 560-567.
[13] LI Meng. Design of online lane line recognition system based on machine vision[J]. Chinese Journal of Engineering Design, 2020, 27(4): 498-507.
[14] LI Dian-lun, HUANG Hua, DENG Wen-qiang. Optimization design of structure of the hydrostatic guideway of NC machine tool[J]. Chinese Journal of Engineering Design, 2020, 27(4): 448-455.
[15] ZHANG Fan, CHU Shao-wei, JI Na-ye. Chinese Braille encoding design for mobile terminal with variable-friction tactile[J]. Chinese Journal of Engineering Design, 2020, 27(2): 154-161.