Please wait a minute...
Chinese Journal of Engineering Design  2023, Vol. 30 Issue (6): 667-677    DOI: 10.3785/j.issn.1006-754X.2023.03.127
Innovative Design     
Design and application of belt lifting mechanism for replacing idler of belt conveyor
Liyong TIAN(),Rui TANG,Ning YU,Hongyue CHEN
School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Download: HTML     PDF(5079KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems of the frequent idler failure of long-haul large belt conveyor, idler replacement work leading to shutdown, and the low efficiency and single equipment of traditional manual idler replacement, a robot that can realize non-stop idler replacement is proposed to improve the idler replacement efficiency by taking the belt conveyor in the main adit of Wangjialing Coal Mine as the research object. The belt lifting mechanism is an important part of idler replacement robot. Based on the functional requirements of the robot and the characteristics of narrow space and large belt load of belt conveyors, a scissor-fork belt lifting mechanism was designed. Firstly, the three-dimensional model of the scissor-fork belt lifting mechanism was constructed by SolidWorks software. After the working load of belt lifting was calculated according to the parameters of the belt conveyor, the force analysis for belt lifting mechanism was carried out. Then, the kinematics simulation analysis for belt lifting mechanism was conducted by SolidWorks Motion module and the statics simulation analysis was carried out by ANSYS Workbench finite element software. Finally, the ground test and underground test were carried out to verify the feasibility of the designed belt lifting mechanism. The ground test results showed that under the load of 20?60 kN, the matching accuracy between the measured and simulated vertical displacement of the belt lifting mechanism was 6%?15%, which verified that the bearing capacity of its main structure met the design requirements. The underground test results proved the rationality and reliability of the belt lifting mechanism design. The bearing capacity and lifting height of the scissor-fork belt lifting mechanism meet the functional requirements of the idler replacement robot, which is a key technical breakthrough to realize the non-stop replacement of idlers for belt conveyors.



Key wordsbelt conveyor      non-stop idler replacement      belt lifting mechanism      simulation analysis     
Received: 06 March 2023      Published: 02 January 2024
CLC:  TH 122  
Cite this article:

Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.03.127     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I6/667


带式输送机更换托辊用皮带举升机构设计与应用

针对长运距大型带式输送机托辊故障频发,托辊更换工作导致停机停产,以及传统人工更换托辊方式效率低、设备单一等问题,以王家岭煤矿主平硐带式输送机为研究对象,提出了一种可实现不停机更换托辊的机器人,以提高托辊更换效率。皮带举升机构是更换托辊机器人的重要部件,基于该机器人的功能需求以及带式输送机空间狭窄、皮带载荷大等特点,设计了剪叉式皮带举升机构。首先,利用SolidWorks软件构建了剪叉式皮带举升机构的三维模型,基于带式输送机参数计算得到举升皮带的工作载荷后,对皮带举升机构进行受力分析。然后,采用SolidWorks Motion模块对皮带举升机构进行运动学仿真分析,同时利用ANSYS Workbench有限元软件对其进行静力学仿真分析。最后,开展地面试验和井下试验,以验证所设计的皮带举升机构的可行性。地面试验结果表明,在20~60 kN载荷下,皮带举升机构竖直位移的实测结果与仿真结果的匹配精度为6%~15%,验证了其主体结构的承载能力满足设计要求;井下试验结果证明了皮带举升机构设计的合理性和可靠性。剪叉式皮带举升机构的承载能力和举升高度均符合更换托辊机器人的功能需求,是实现带式输送机不停机更换托辊的关键技术突破。


关键词: 带式输送机,  不停机更换托辊,  皮带举升机构,  仿真分析 
Fig.1 Structure composition of idler replacement robot
Fig.2 Structure schematic of belt conveyor
Fig.3 Structure schematic of groove-shape idler group
Fig.4 Three-dimensional model of swing-type belt lifting mechanism
Fig.5 Structure sketch of scissor-fork belt lifting mechanism
Fig.6 Three-dimensional model of scissor-fork belt lifting mechanism
参数量值
水平机长12.8 km
皮带带宽1 600 mm
皮带带速3.6 m/s
承载托辊间距2 m
额定输送量4 000 t/h
皮带质量79 kg/m
皮带张紧力120 kN
Table 1 Key parameters of belt conveyor
Fig.7 Belt tension force analysis
Fig.8 Schematic diagram of material cross-sectional shape on belt conveyor
Fig.9 Force analysis of idler
Fig.10 Pressure distribution of idler surface
Fig.11 Schematic of lifting status of scissor-fork belt lifting mechanism
Fig.12 Force analysis of scissor arm
Fig.13 Initial and final posture of scissor-fork belt lifting mechanism
Fig.14 Motion curve of lifting cylinder
Fig.15 Vertical displacement curve of intermediate idler frame
Fig.16 Angular velocity and angular acceleration curves of scissor arm
零部件材料
剪叉臂45钢
油缸滑块Q235
托辊架Q235
底座45钢
Table 2 Main component materials of scissor-fork belt lifting mechanism
Fig.17 Finite element grid model of scissor-fork belt lifting mechanism
Fig.18 Equivalent stress cloud map of scissor-fork belt lifting mechanism
Fig.19 Deformation cloud map of scissor-fork belt lifting mechanism
Fig.20 Ground test site of belt lifting mechanism
对比项载荷/kN
2030405060
相对误差/%6.09814.4114.6310.9212.37
实测值0.3490.6430.7520.9241.508
仿真值0.3140.5620.6560.8331.342
Table 3 Comparison of vertical displacement of intermediate idler frame under different loads
Fig.21 Underground test site in shutdown state
Fig.22 Underground test site under working condition
Fig.23 Belt lifting height measurement site
Fig.24 Variation curve of belt lifting height
[1]   庞静.皮带输送机缓冲托辊损坏原因分析及改进研究[J].山西冶金,2020,43(6):187-189.
PANG J. Analysis and improvement on damage cause of buffer roller of belt conveyor[J]. Shanxi Metallurgy, 2020, 43(6): 187-189.
[2]   崔融融.带式输送机故障自动巡检机器人系统设计[J].煤矿机械,2021,42(3):15-18.
CUI R R. Design of automatic fault inspection robot system for belt conveyor[J]. Coal Mine Machinery, 2021, 42(3): 15-18.
[3]   周啟,李晨曦,马铭,等.长距离带式输送机不同区段托辊组结构形式研究[J].煤矿机械,2020,41(8):39-41.
ZHOU Q, LI C X, MA M, et al. Research on structure forms of idler group in different sections of long-distance belt conveyor[J]. Coal Mine Machinery, 2020, 41(8): 39-41.
[4]   谢厚抗,鲍久圣,葛世荣,等.带式输送机承载托辊旋转阻力特性试验研究[J].煤炭学报,2019,44():731-736.
XIE H K, BAO J S, GE S R, et al. Experimental research on rotational resistance characteristics of belt conveyor bearing idler[J]. Journal of China Coal Society, 2019, 44(Supp. 2): 731-736.
[5]   蒋建军,王艳丽.煤矿带式输送机常见故障分析及防范措施研究[J].内蒙古煤炭经济,2019(15):179-180. doi:10.3969/j.issn.1008-0155.2019.15.126
JIANG J J, WANG Y L. Analysis of common faults of belt conveyor in coal mine and research on preventive measures[J]. Inner Mongolia Coal Economy, 2019(15): 179-180.
doi: 10.3969/j.issn.1008-0155.2019.15.126
[6]   常小林.带式输送机托辊旋转阻力与转速分析[J].煤矿机械,2021,42(12):72-74.
CHANG X L. Analysis of rotation resistance and speed of belt conveyor idler[J]. Coal Mine Machinery, 2021, 42(12): 72-74.
[7]   刘万鑫,李志杰,刘俊杰,等.一种轮式三节三姿态平台的结构设计与仿真分析[J].机械设计,2021,38(12):52-57.
LIU W X, LI Z J, LIU J J, et al. Structure design and simulation analysis on the wheeled three-section three-attitude platform[J]. Journal of Machine Design, 2021, 38(12): 52-57.
[8]   杨福珍,白霄,杨清翔.长运距主平硐带式输送机设计与应用[J].煤炭科学技术,2016,44(10):146-149.
YANG F Z, BAI X, YANG Q X. Design and application on long conveying distance belt conveyor in main adit[J]. Coal Science and Technology, 2016, 44(10): 146-149.
[9]   宋冠霆,宋伟刚.带式输送机物料截面积计算方法的评述与确定[J].煤炭学报,2017,42():556-561.
SONG G T, SONG W G. Determination and review on calculation method of cross-sectional area of carrying material at belt conveyor[J]. Journal of China Coal Society, 2017, 42(Supp. 2): 556-561.
[10]   刘伟立.带式输送机托辊架含中间架有限元分析[J]. 煤矿机械,2017,38(8):154-156.
LIU W L. Finite element analysis of belt conveyor roller and intermediate rack[J]. Coal Mine Machinery, 2017, 38(8): 154-156.
[11]   武文璇,李金良,张媛,等.基于ANSYS Workbench的带式输送机托辊架的仿真分析[J].煤矿机械,2013,34(2):101-103.
WU W X, LI J L, ZHANG Y, et al. Simulation of belt conveyor roller rack based on ANSYS Workbench[J]. Coal Mine Machinery, 2013, 34(2): 101-103.
[12]   王珏.带式输送机槽形托辊压陷阻力理论研究[J].机械工程师,2021(5):111-112.
WANG J. Theoretical research on indentation resistance for trough idlers of belt conveyor[J]. Mechanical Engineer, 2021(5): 111-112.
[13]   刘振.带式输送机高速托辊的研究与应用分析[D].青岛:山东科技大学,2011:17-21.
LIU Z. Research on the high-speed idler of the conveyor[D]. Qingdao: Shandong University of Science and Technology, 2011: 17-21.
[14]   刘俊谊,杨刚,张万军,等.剪叉式提升机构受力特性分析[J].陆军工程大学学报,2014,15(2):133-138.
LIU J Y, YANG G, ZHANG W J, et al. Force analysis of scissor lift mechanisms[J]. Journal of Army Engineering University of PLA, 2014, 15(2): 133-138.
[15]   胥军,李刚炎,杨飞,等.剪叉式升降机举升机构分析与优化[J].机械科学与技术,2013,32(6):919-922.
XU J, LI G Y, YANG F, et al. Analysis and optimization for lifting mechanism of scissor-fork lifter[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(6): 919-922.
[16]   刘文武.矿用车载式升降平台的设计与研究[J].煤矿机械,2019,40(2):92-94.
LIU W W. Design and research of lifting platform of mine car[J]. Coal Mine Machinery, 2019, 40(2): 92-94.
[17]   张嘉宁,张明路,李满宏,等.面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J].工程设计学报,2022,29(4):430-437. doi:10.3785/j.issn.1006-754X.2022.00.054
ZHANG J N, ZHANG M L, LI M H, et al. Structural design and stiffness optimization of mechanical arm with super large telescopic ratio for ash silo cleaning[J]. Chinese Journal of Engineering Design, 2022, 29(4): 430-437.
doi: 10.3785/j.issn.1006-754X.2022.00.054
[18]   申理精,耿坤,李盘浩,等.索杆桁架式可展开机构设计与力学分析[J].机械工程学报,2022,58(17):135-143. doi:10.3901/jme.2022.17.135
SHEN L J, GENG K, LI P H, et al. Design and mechanical analysis of cable rod truss deployable mechanism[J]. Journal of Mechanical Engineering, 2022, 58(17): 135-143.
doi: 10.3901/jme.2022.17.135
[19]   刘建良,张具安.双剪叉式升降平台结构设计及有限元仿真[J].煤炭科学技术,2018,46():193-195.
LIU J L, ZHANG J A. Finite elements simulation and structural design of scissors elevating platform[J]. Coal Science and Technology, 2018, 46(Supp. 1): 193-195.
[20]   于玉真,邸海宽,赵博,等.带式输送机托辊辊筒和轴承座有限元分析[J].煤矿机械,2019,40(10):72-74.
YU Y Z, DI H K, ZHAO B, et al. Finite element analysis of pipe body and bearing seat of belt conveyor idler[J]. Coal Mine Machinery, 2019, 40(10): 72-74.
[21]   田立勇,隋然,宋振铎,等.基于有限元法的固体充填液压支架底座结构参数优化[J].机械设计,2018,35(2):98-104.
TIAN L Y, SUI R, SONG Z D, et al. Structure optimization for foundation of solid filling hydraulic support based on finite element method[J]. Journal of Machine Design, 2018, 35(2): 98-104.
[1] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[2] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[3] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[4] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[5] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.
[6] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chinese Journal of Engineering Design, 2021, 28(6): 720-728.
[7] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[8] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[9] HAO Di-long, HE Xia, WANG Guo-rong, YI Jian-guo, CHEN Zhang-bin. Structure optimization of integral slip groove[J]. Chinese Journal of Engineering Design, 2019, 26(5): 534-543.
[10] WANG Ke-fei, SHI Pei-cheng, PENG Shan-shan, DIAO Jie-sheng. Static stiffness analysis of automotive BIW under different boundary constraint conditions[J]. Chinese Journal of Engineering Design, 2019, 26(4): 441-451.
[11] CHEN Zhao-ming, XU Ze-yu, ZOU Jing-song, ZHAO Ying, SHI Ming-quan. Hydraulic system design of multi-functional laying trolley equipment in tunnel construction and its response characteristic analysis[J]. Chinese Journal of Engineering Design, 2019, 26(1): 116-122.
[12] FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chinese Journal of Engineering Design, 2018, 25(6): 697-702.
[13] ZHANG Zhao, ZHANG Ji-zhong. Design and dynamic simulation research of self-adaptive bobbin gripper for automatic doffer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 539-545.
[14] WANG Yao, LI Shu-jun, ZHAO Wen-yu, MENG Wen-jun. Experimental and theoretical analysis of static and dynamic characteristic of linear motor used in belt conveyor[J]. Chinese Journal of Engineering Design, 2017, 24(3): 303-310.
[15] LIU Xiao-long, ZHAO Yan-jun, GE Wen-qing, WANG Ying, ZHANG Zhong-dong. Design and dynamics simulation analysis of medical disabled lower limb exoskeleton[J]. Chinese Journal of Engineering Design, 2016, 23(4): 327-332.