Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (1): 66-73    DOI: 10.3785/j.issn.1006-754X.2022.00.008
    
Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism
FAN Xiao-yue1, LIU Qi1, GUAN Wei2, ZHU Yun1, CHEN Su-lin1, SHEN Bin1
1.School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2.Hudong Heavy Machinery Co., Ltd., Shanghai 200129, China
Download: HTML     PDF(2412KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In order to study the temperature distribution of the electromagnetic micro hammer peening mechanism in the working process and improve its power density, first of all, based on the existing electromagnetic micro hammer peening mechanism, the relationship between its thermal effect and output power was analyzed from the perspective of energy, and it was clarified that the thermal effect would limit the maximum output power of mechanism. Then, the CFD (computational fluid dynamics) simulation analysis of the temperature field of electromagnetic micro hammer peening mechanism under air-cooling and water-cooling mode was carried out by the COMSOL Multiphysics software, and the equivalent convective heat transfer coefficients under different inlet boundary conditions were determined; at the same time, according to the relationship between the equivalent convective heat transfer coefficient and the inlet boundary condition, a transient temperature analysis model for this mechanism was established. Finally, a temperature measurement experimental platform for the electromagnetic micro hammer peening mechanism was built, and the temperature rise characteristics and the steady-state temperature characteristics of the mechanism were experimentally studied. The experimental results showed that the proposed thermal effect simulation analysis method for the electromagnetic micro hammer peening mechanism was relatively reasonable and accurate, which could provide a reference for the temperature control and structure optimization of micro hammer peening mechanisms.

Key wordselectromagnetic micro hammer peening mechanism      CFD (computational fluid dynamics) simulation analysis      transient temperature      temperature rise characteristics     
Received: 19 January 2021      Published: 28 February 2022
CLC:  TH 122  
Cite this article:

FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism. Chin J Eng Design, 2022, 29(1): 66-73.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.008     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I1/66


电磁微锻机构热效应模拟与实验研究

为研究电磁微锻机构在工作过程中的温度分布情况以及提高其功率密度,首先,在现有电磁微锻机构的基础上,从能量角度对其热效应与输出功率的关系进行分析,明确了热效应会限制机构的最大输出功率。然后,利用COMSOL Multiphysics软件分别对风冷和水冷方式下电磁微锻机构的温度场进行CFD (computational fluid dynamics, 计算流体力学)仿真分析,确定了不同入口边界条件下的等效对流换热系数;同时,根据等效对流换热系数与入口边界条件的关系,建立了该机构的瞬态温度分析模型。最后,搭建了电磁微锻机构温度测量实验平台,并对该机构的温升特性和稳态温度特性进行了实验研究。实验结果表明,所提出的电磁微锻机构热效应仿真分析方法较为合理、准确,可为微锻机构的温度控制和结构优化提供参考。

关键词: 电磁微锻机构,  CFD仿真分析,  瞬态温度,  温升特性 
1 HACINI L, LE N, BOCHER P. Effect of impact energy on residual stresses induced by hammer peening of 304L plates[J]. Journal of Materials Processing Technology, 2008,208(1):542-548. doi:10.1016/j.jmatprotec.2008. 01.025
2 WIED J, SCHEIL J, KLAMSER M, et al. Impact experiments and finite element simulation of surface roughness reduction by machine hammer peening[J]. Materialwissenschaft und Werkstofftechnik,2011,42(9): 827-832. doi:10.1002/mawe.201100768
3 SCHULEZ V, BLIECHER F, GROCHE P, et al. Surface modification by machine hammer peening and burnishing[J]. CIRP Annals, 2016, 65(2): 809-832. doi:10.1016/j.cirp. 2016.05.005
4 TRAUTH D, KLOCKE F, WELLING D, et al. Investigation of the surface integrity and fatigue strength of Inconel718 after wire EDM and machine hammer peening[J]. International Journal of Material Forming, 2016, 9: 635-651. doi:10.1007/s12289-015-1249-4
5 TRAUTH D, FEUERHACK A, MATTFELD P, et al. Analysis of the velocity distribution of an elliptic surface structure manufactured by machine hammer peening[J]. Tribology Letters, 2015, 60: 19. doi:10.1007/s11249-015-0595-1
6 STEITZ M, STEIN P, GROCHE P. Influence of hammer-peened surface textures on friction behavior[J]. Tribology Letters, 2015, 58: 24. doi:10.1007/s11249-015-0502-9
7 王凤翔.高速电机的设计特点及相关技术研究[J].沈阳工业大学学报,2006,28(3):258-264. doi:10.3969/j.issn.1000-1646.2006.03.005 WANG Feng-xiang. Study on design feature and related technology of high speed electrical machines[J]. Journal of Shenyang University of Technology, 2006,28(3): 258-264.
8 陈伟根,苏小平,孙才新,等.基于有限体积法的油浸式变压器绕组温度分布计算[J].电力自动化设备,2011,31(6):23-27. doi:10.3969/j.issn.1006-6047.2011.06.006 CHEN Wei-gen, SU Xiao-ping, SUN Cai-xin, et al. Temperature distribution calculation based on FVM for oil-immersed power transformer windings[J]. Electric Power Automation Equipment, 2011, 31(6): 23-27.
9 LEE S B, HABETLER T G, HARLEY R G, et al. An evaluation of model-based stator resistance estimation for induction motor stator winding temperature monitoring[J]. IEEE Transactions on Energy Conversion, 2002, 17(1): 7-15. doi:10.1109/60.986431
10 邰永.三相鼠笼异步电机热磁耦合分析及效率优化设计[D].北京:北京工业大学,2010:4-7. TAI Yong. Thermal magnetic analysis and efficiency optimization design of three-phase squirrel-cage asynchronous motor[D]. Beijing: Beijing University of Technology, 2010: 4-7.
11 王晓远,高鹏,赵玉双.电动汽车用高功率密度电机关键技术[J].电工技术学报,2015,30(6):53-59. doi:10.3969/j.issn.1000-6753.2015.06.007 WANG Xiao-yuan, GAO Peng, ZHAO Yu-shuang. Key technology of high power density motor for electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59.
12 桂宇飞.微锻工艺增强TC4钛合金表面完整性研究[D]. 上海:上海交通大学,2020:21-22. GUI Yu-fei. Enhancement on the surface integrity of TC4 titanium alloy by micro-forging[D]. Shanghai: Shanghai Jiaotong University, 2020: 21-22.
13 FIORILLO F. Measurement and characterization of magnetic materials[M]. Boston: Elsevier Academic Press, 2004: 31-32. doi:10.1016/b978-012257251-7/50009-5
[1] LI Jin-guo, LIU Hong. Simulation of temperature field in mould heating system of rubber injecting machine[J]. Chin J Eng Design, 2008, 15(4): 300-302.