Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (6): 697-702    DOI: 10.3785/j.issn.1006-754X.2018.06.011
    
Research on load-bearing performance of industrial assembly exoskeleton manipulator
FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(1631KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The manipulator is one of the most important parts of industrial assembly exoskeleton, which has an important effect on the support and stability of tools, and it determines the performance of the exoskeleton. Considering the current design method of the humanoid manipulator and according to the arm size of Chinese man, a manipulator for industrial assembly exoskeleton was designed based on spring-linkage mechanism. To prove the feasibility of weight-loss performance of this manipulator, the fundamental principles of the manipulator for tools support was explained according to the static balance system of spring-linkage mechanism. Nine groups of simulation experiments were designed with different parameters of initial angle θ1 and θ2 to study the bearing performance of this manipulator by a new reverse thinking method presented, so that the relation curves of lift height and lift force were received under different conditions. The concept of effective load-bearing interval was proposed to explain and study the load-bearing performance. The result of simulation experiments showed that smaller initial angle could get larger interval of effective load-bearing, and the initial angle θ1 had greater influence on the lightweight performance than the initial angle θ2. Additionally, it could make the tools installed on the manipulator more stable by enlarging the initial angle. So, it can prove that this manipulator is suitable for the industrial assembly exoskeleton, and provide the other researcher some ideas of study and design for this kind of exoskeleton.



Key wordsmanipulator      industrial assembly exoskeleton      spring-linkage mechanism      static balance system      simulation analysis     
Received: 21 May 2018      Published: 28 December 2018
CLC:  TP242  
  TH122  
Cite this article:

FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator. Chinese Journal of Engineering Design, 2018, 25(6): 697-702.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.06.011     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I6/697


工业装配外骨骼机械臂承重性能研究

机械臂是工具支撑型工业装配外骨骼非常重要的一部分,它对工具的稳定支撑有着重要影响,直接决定此类外骨骼的使用性能。结合现有仿人机械臂的设计方法,以国内成年男子手臂尺寸为依据,基于弹簧连杆机构设计了一款用于工业装配外骨骼的机械臂。根据弹簧连杆机构的静平衡系统,阐述了工业装配外骨骼机械臂支撑以及承重的基本原理,证明了机械臂减重的可行性。为研究工业装配外骨骼机械臂承重性能,基于现有外骨骼模型进行了9组两弹簧机构连杆初始角度为不同θ1θ2的仿真试验,并利用逆向仿真方法得到了不同条件下机械臂举升高度与举升力之间的关系曲线。为了更方便地研究机械臂承重性能,针对此机械臂提出了有效承重区间的概念。仿真试验结果表明,减小初始角度可以得到更大的有效承重区间,θ1对整个机械臂承重性能的影响比θ2大;具有较大初始角度的机械臂能够增强工具的稳定性。研究结果证明了基于弹簧连杆机构的机械臂能够很好地应用于工业装配外骨骼,为此类外骨骼机械臂的研究和设计提供了参考。


关键词: 机械臂,  工业装配外骨骼,  弹簧连杆机构,  静平衡系统,  仿真分析 
[[1]]   贾宁,凌瑞杰,王伟,等.汽车装配工人工效学负荷与工作相关肌肉骨骼损伤的相关性研究[J].环境与职业医学,2017,34(10):858-863. JIA Ning, LING Rui-jie, WANG Wei, et al. Correlation between ergonomic load and work-related musculoskeletal disorders among automobile assembly workers[J]. Journal of Environmental & Occupational Medicine, 2017, 34(10):858-863.
[[2]]   李玉珍,李珏,李刚,等.汽车装配作业工人肌肉骨骼损伤与工效学负荷水平的相关性[J].环境与职业医学,2015,32(5):393-398. LI Yu-zhen, LI Jue, LI Gang, et al. Correlation between musculoskeletal disorders and ergonomic load levels among automobile assembly workers[J]. Journal of Environmental & Occupational Medicine, 2015, 32(5):393-398.
[[3]]   郭智屏,刘新霞,刘浩中,等.制造行业生产工人职业性肌肉骨骼疾患影响因素[J].中国职业医学,2017,44(4):459-462. GUO Zhi-ping, LIU Xin-xia, LIU Hao-zhong, et al. Influencing factors of occupational musculoskeletal disorders in workers of manufacturing industry[J]. China Occupational Medicine, 2017, 44(4):459-462.
[[4]]   SPADA S, GHIBAUDO L, GILOTTA S, et al. Analysis of exoskeleton introduction in industrial reality:main issues and EAWS risk assessment[C]//Advances in Physical Ergonomics and Human Factors. AHFE 2017. Advances in Intelligent Systems and Computing, Los Angeles, Jul.17-21, 2017.
[[5]]   NOONEE. The chairless chair[EB/OL].(2014-06-20)[2018-05-18]. http://robohub.org/noonee-the-chairless-chair/
[[6]]   RB3D. Exoskeletons for heavy loads[EB/OL].[2018-05-18]. https://www.rb3d.com/produits/exosquelettes/
[[7]]   Lockheed Martin Space Systems Company. Exoskeleton technologies[EB/OL].[2018-05-18].http//www.lockheedmartin.com/us/products/exoskeleton/FORTIS.html.
[[8]]   叶平,宋爽,何雷,等.基于弹簧机构的宇航员抗阻力训练器[J].机械工程学报,2014,50(23):1-7. YE Ping, SONG Shuang, HE Lei, et al. Resistive exercise device based on spring mechanism for astronauts[J]. Journal of Mechanical Engineering, 2014, 50(23):1-7.
[[9]]   BANALA S K,AGRAWAL S K, FATTAH A, et al. Gravity-balancing leg orthosis and its performance evaluation[J]. IEEE Transaction on Robotics, 2006, 22(6):110-119.
[[10]]   ALTENBURGER R, SCHERLY D, STADLER K S. Design of a passive, iso-elastic upper limb exoskeleton for gravity compensation[J]. Robomech Journal, 2016, 3(1):12.
[[11]]   赵京,宋春雨,杜滨.基于人体工程学的仿人机械臂构型[J].机械工程学报,2013,49(11):16-21. ZHAO Jing, SONG Chun-yu, DU Bin. Configuration of humanoid robotic arm based on human engineering[J]. Journal of Mechanical Engineering, 2013, 49(11):16-21.
[[12]]   MORECKI A. Biomechanics of engineering:modelling, simulation, control[M]. Wien:Springer Verlag, 1987:1-83.
[[13]]   ZACHARIAS F,HOWARD I S,HULIN T,et al. Workspace comparisons of setup configurations for human-robot interaction[C]//Proceedings of 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010, Taiwan, China, Oct.18-22, 2010.
[[14]]   PERRY J C, ROSEN J. Design of a 7 degree offreedom upper-limb powered exoskeleton[C]//IEEE/RAS-Embs International Conference on Biomedical Robotics and Biomechatronics, Pisa:IEEE, 2006:805-810.
[[15]]   NAIDU D, STOPFORTH R, BRIGHT G, et al. A 7 DOF exoskeleton arm:shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals[C]//Africon, Livingstone, IEEE, 2011:1-6.
[[16]]   中国标准化与信息分类编码研究院.中国成年人人体尺寸:GB 10000-1988[S].北京:国家技术监督局,1989:1-5. China National Institute of Standardization. Human dimensions of Chinese adults:GB10000-1988[S]. Beijing:Inspection and Quarantine of the People's Republic of China, 1989:1-5.
[[17]]   HERDER J L. Energy-free systems, theory, conception and design of statically balanced spring mechanisms[D]. Delft:Delft University of Technology,2001
[1] Hongyue CHEN,Minghang CAI,Xinwei YANG,Zhonghuan DAI. Structure and dynamics analysis of special manipulator frame for replacing wire rope of electric shovel[J]. Chinese Journal of Engineering Design, 2023, 30(5): 590-600.
[2] Hongyang JIN,Longwang YUE,Jingda LIU,Weiwei ZHENG,Zhao ZHAO,Jiahui XU. Research on flexible manipulator with variable stiffness based on particle blocking mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(4): 449-455.
[3] Qiqi LI,Xiangrong XU,Hui ZHANG. Sliding mode trajectory tracking control of manipulator based on adaptive neural network[J]. Chinese Journal of Engineering Design, 2023, 30(4): 512-520.
[4] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[5] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chinese Journal of Engineering Design, 2022, 29(6): 684-694.
[6] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[7] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[8] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[9] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.
[10] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chinese Journal of Engineering Design, 2021, 28(6): 720-728.
[11] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[12] LIU Xiao-yu, TIAN Ying, ZHANG Ming-lu. Review of underwater manipulator dynamics research[J]. Chinese Journal of Engineering Design, 2021, 28(4): 389-398.
[13] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[14] HE Xiao-ying, GAO Xing-yu, WANG Hai-jian, PENG Yan-hua, LI Yu. Stability analysis of 7-DOF dual-arm cooperative robot operation[J]. Chinese Journal of Engineering Design, 2019, 26(6): 706-713.
[15] YUAN Kai, LIU Yan-jun, SUN Jing-yu, LUO Xing. Research on control of underwater manipulator based on fuzzy RBF neural network[J]. Chinese Journal of Engineering Design, 2019, 26(6): 675-682.