Modeling, Simulation, Analysis, and Decision |
|
|
|
|
Simulation analysis of wind load response for large gantry crane |
WANG Yu-pu1,2, CHENG Wen-ming1,2, DU Run1,2, WANG Shu-biao1,2, YANG Xing-zhou1,2, ZHAI Shou-cai1,2 |
1.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2.Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province,Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract Wind load is an important load in crane design and operation. In recent years, gantry cranes have shown a development trend of "large-scale" and "flexible". Large gantry crane is increasingly sensitive to wind load due to its structural characteristics. However, the current Design rules for cranes only defines the static wind load on the upwind surface by the wind force coefficient and wind shield reduction coefficient, so that the wind load distribution on each surface of the crane can not be obtained. To solve this problem, the wind flow characteristics of large gantry crane were simulated by the computational fluid dynamics (CFD) software. Then,by using the unidirectional fluid-solid coupling method,the wind load data was introduced into the computational structural mechanics modelof crane and analyzed. Finally, the wind load response of gantry crane in the natural wind fieldwas obtained and compared with the calculation results according to the Design rules for cranes. The results showed that the wind load of the crane by using the CFD simulation was similar to that calculated according to the Design rules for cranes. However, the structural stress and structuralstrain of the crane obtained based on the fluid-structure coupling method were 22.77% and 17.23% larger, respectively. This was because each surface of the crane was affected by the wind load in the natural wind field, but the Design rules for cranes only quantified the wind load on the upwind surface, while ignoring the negative pressure and viscous force effects on the non-windward surface. The main beam and outriggers of the gantry crane were in tandem structure, and the upstream structure had a shielding effect on the downstream structure, which led to negative pressure on the downstream structure surface, while the shielding effect weakened with the increase of spacing ratio between the upstream and downstream structures. Resecrch results can provide a reference for the design and verification of large gantry cranes.
|
Received: 21 August 2019
Published: 28 April 2020
|
|
大型门式起重机风荷载响应仿真分析
风荷载是起重机设计及运行时的重要荷载,近年来门式起重机呈现“大型化”“柔性化”的发展趋势。大型门式起重机受其结构特性影响,对风荷载极其敏感,现行《起重机设计规范》仅通过风力系数及挡风折减系数对起重机迎风面的静风荷载进行界定,因而无法获得起重机各表面的风荷载分布情况。为解决这一问题,利用计算流体力学(computational fluid dynamics,CFD)软件对大型门式起重机的风场绕流特性进行仿真分析,并运用单向流固耦合方法将风荷载数据引入起重机计算结构力学模型并进行有限元分析,从而获得自然风场中大型门式起重机的风荷载响应,并将它与根据《起重机设计规范》计算得到的结果进行对比。结果表明:利用计算流体力学仿真分析得到的起重机整机风荷载与根据《起重机设计规范》计算得到的结果相近,但基于流固耦合方法所得的起重机结构应力大22.77%,结构应变大17.23%,这是因为自然风场中起重机各表面均受风荷载影响,而《起重机设计规范》仅对迎风面风荷载进行量化,忽略了流体在非迎风面产生的负压以及黏性力作用;门式起重机的主梁及支腿为串列结构,上游结构对下游结构有屏蔽效应,使得下游结构表面为负压,且屏蔽效应随着上下游结构间隔比的增大而减弱。研究结果可为起重机的设计校核提供参考。
关键词:
门式起重机,
风荷载,
计算流体力学,
流固耦合,
仿真分析
|
|
[1] 张戬杰,张氢,秦仙蓉,等. 7 500吨浮式起重机风载荷特性分析[J]. 湖南大学学报(自然科学版),2014,41(1):76-80. doi: 10.3969/j.issn.1674-2974.2014.01.013 ZHANGJian-jie, ZHANGQing, QINXian-rong, et al. Model test of wind load characteristic of 7 500 t floating crane[J].Journal of Hunan University (Natural Sciences) , 2014, 41(1): 76-80. [2] 邓星,于兰峰,雷聪,等. 无轨伸缩式门式起重机接触部位的有限元分析[J]. 工程设计学报,2018,25(1):79-84,93. doi: 10.3785/j.issn.1006-754X.2018.01.011 DENGXing, YULan-feng, LEICong, et al. Research on contact problem of trackless telescopic gantry crane[J]. Chinese Journal of Engineering Design, 2018, 25(1): 79-84, 93. [3] 邱惠清,吴志君. 集装箱起重机的脉动风场仿真及响应分析[J]. 振动、测试与诊断,2013,33(1):44-48,164. doi:10.3969/j.issn.1004-6801.2013.01.009 QIUHui-qing, WUZhi-jun. Simulation of fluctuating velocity field and response analysis of container crane[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(1): 44-48, 164. [4] 张相庭. 工程结构风荷载理论与抗风设计手册[M]. 上海:同济大学出版社,1990:346-354. ZHANGXiang-ting. Wind load theory and wind resistance design manual for engineering structure[M]. Shanghai: Tongji University Press, 1990: 346-354 [5] 中国机械工业联合会.起重机设计规范:GB/T 3811—2008[S]. 北京:中国标准出版社,2008:16-20. China Machinery Industry Federation. Design rules for cranes: GB/T 3811-2008 [S]. Beijing: China Standards Publishing House, 2008: 16-20. [6] SOHANKARAhmad. A LES study of the flow interference between tandem square cylinder pairs[J]. Theoretical and Computational Fluid Dynamics, 2014, 28(5): 531-548. doi: 10.1007/s00162-014-0329-2 [7] LEE S J, KANGJ H. Wind load on a container crane located in atmospheric boundary layers[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(2): 193-208. doi: 10.1016/j.jweia.2007.04.003 [8] HULiang, GUMing, LILi. Errors produced with proper orthogonal decomposition-based spectral representation method in wind velocity field simulation[J]. Journal of Vibration and Shock, 2011, 30(4): 12-15, 20. doi: 10. 1088/0253-6102/55/2/31 [9] 吴学阳,程文明,衡亚霖,等. 大型门机在自然风场中的脉动特性研究[J]. 机械设计与制造,2016(9):73-76. doi: 10.3969/j.issn.1001-3997.2016.09.019 WUXue-yang, CHENGWen-ming, HENGYa-lin,et al. Fluctuation effects of natural wind on large gantry crane[J]. Machinery Design & Manufacture, 2016(9): 73-76. [10] VOISIND, GRILLAUADG, SOLLIECC, et al. Wind tunnel test method to study out-of-service tower crane behavior in storm winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8): 687-697.doi: 10.1016/j.jweia.2004.03.005 [11] 黄鹏,顾明,全涌. 高层建筑标准模型风洞测压和测力试验研究[J]. 力学季刊,2008,29(4):627-633. doi: 10. 15959/j.cnki.0254-0053.2008.04.022 HUANGPeng, GUMing, QUANYong. Wind tunnel test research on CAARC standard tall building model[J]. Chinese Quarterly of Mechanics, 2008, 29 (4): 627-633. [12] 朱小海,程文明,罗鹏. 基于CFD的大型门式起重机风载特性研究[J]. 机械设计,2014(8):83-87. doi: 10.13841/j.cnki.jxsj.2014.08.020 ZHUXiao-hai, CHENGWen-ming, LUOPeng. CFD based study on wind-load characteristics of large gantry crane[J]. Journal of Machine Design, 2014(8): 83-87. [13] 顾明,黄鹏,王勇军. 集装箱起重机平均风荷载数值模拟及试验对比[J]. 同济大学学报(自然科学版),2008,36(8):1024-1027,1039. doi:10.3321/j.issn:0253-374X.2008.08.003 GUMing, HUANGPeng, WANGYong-jun. Numerical simulation of mean wind loads on a container crane and its comparison with experimental results[J]. Journal of Tongji University (Natural Science), 2008, 36(8): 1024-1027, 1039. [14] 马晋,王子通,周岱,等. 典型塔式起重机塔架结构风致动力响应与疲劳分析[J]. 上海交通大学学报,2014,48(6): 804-808. doi: 10.16183/j.cnki.jsjtu.2014.06.013 MAJin, WANGZi-tong, ZHOUDai, et al. Analysis of wind-induced vibration and fatigue effects of a typical tower crane[J]. Journal of Shanghai Jiaotong University, 2014, 48(6): 804-808. [15] 卢凯良,邱惠清,毛飞,等. 7 500 t浮吊臂架考虑铰支座间隙的风致横向振动研究[J]. 振动与冲击,2009,28(10): 94-98. doi: 10.3969/j.issn.1000-3835.2009.10.019 LUKai-liang, QIUHui-qing, MAOFei, et al. Wind-induced lateral vibration of 7 500 t floating crane’s boom considering axial clearance between boom and pin hinge[J]. Journal of Vibration and Shock, 2009, 28(10): 94-98. [16] SHIHT H, LIOUW W, SHABIRA, et al. A new eddy viscosity model for high Reynolds number turbulent flows model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032 [17] 龙驭球,包世华. 结构力学I:基本教程[M]. 北京:高等教育出版社,2006:26-45. LONGYu-qiu, BAOShi-hua. Structural mechanics I:basic course[M]. Beijing: Higher Education Press, 2006: 26-45. [18] SOHANKARA. A numerical investigation of the flow over a pair of identical square cylinders in a tandem arrangement[J]. International Journal for Numerical Methods in Fluids, 2012, 70(10): 1244-1257. doi: 10. 1002/fld.2739 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|