Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 232-238    DOI: 10.3785/j.issn.1006-754X.2020.00.030
Optimization Design     
Multi-objective optimal design of UUV pressure structure
GAO Qi-sheng1,2, ZHU Xing-hua1,2, YU Yan-kai1,2, ZHENG Rong1,2
1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2.Institute of Robotics and Intelligent Manufacturing Innovation, Chinese Academy of Sciences, Shenyang 110016, China
Download: HTML     PDF(584KB)
Export: BibTeX | EndNote (RIS)      

Abstract  UUV (unmanned underwater vehicle) has a wide application prospects in the marine civil and military fields. As an important part, UUV pressure structure affects the load capacity of UUV and can guarantee the UUV execute navigation tasks safely and efficiently, so it is of great significance to optimize the pressure structure. In order to reduce weight at the greatest extent, and balance the contradictory among the weight, structural strength and stability of pressure structure, a multi-objective optimization method based on the combined weighted response surface method was proposed to improve the comprehensive capacities of UUV. The initial sampling points were obtained through the design of experiment, and the response values were calculated and the agent model was constructed by using the finite element tool.Then, the sub-target was normalized by the compromise programming method, and the weight coefficients of sub-targets were set up by combined weighted method to achieve the multi-objective optimal design of pressure structure. Taking a certain type of UUV as an example, the multi-objective optimal design for its pressure structure with trapezoid rib was carried out based on the proposed method.The weight of the optimized pressure structure was reduced by 6.6%, the rib stress was reduced by 6.7%, and the stability requirement was met at the same time. On this basis, the pressure structures with different rib forms were optimized with weight as the optimization goal and with weight, structural strength and stability as the comprehensive optimization goals, respectively. The results showed that the comprehensive optimization effect of the pressure structure with trapezoid rib was the best. This method is suitable for the multi-objective optimization of UUV pressure structure, and the research results can provide a theoretical guidance for the optimal design of UUV pressure structure, which has the practical engineering significance.

Key wordspressure structure      combined weighted method      response surface method      multi-objective optimization     
Received: 04 June 2019      Published: 28 April 2020
CLC:  TH 122  
Cite this article:

GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.030     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/232


UUV耐压结构多目标优化设计

UUV(unmanned underwater vehicle,无人水下航行器)在海洋民用与军事领域具有广阔的应用前景。UUV耐压结构作为影响UUV负载能力及保障UUV航行任务安全高效执行的重要部件,其优化设计有重要意义。为了最大程度地实现减重目标,有效平衡耐压结构质量、结构强度和稳定性之间的矛盾,进而提升UUV综合性能,提出一种基于组合加权响应面法的多目标优化方法。通过试验设计得到初始采样点,利用有限元工具计算响应值并构建代理模型;然后,以折衷规划法对子目标进行归一化处理,采用组合加权法设定子目标权重系数,以进行耐压结构的多目标优化设计。以某型UUV为例,利用所提方法对其梯形肋骨耐压结构进行多目标优化设计,优化后耐压结构质量减轻了6.6%,肋骨应力下降了6.7%,同时满足稳定性要求。在此基础上,分别以质量为优化目标和以质量、结构强度和稳定性为综合优化目标,对不同肋骨形式耐压结构进行优化设计。结果表明:梯形肋骨耐压结构的综合优化效果最佳。该研究方法适用于UUV耐压结构的多目标优化,研究结果可为UUV耐压结构优化设计提供理论指导,具有实际工程意义。

关键词: 耐压结构,  组合加权法,  响应面法,  多目标优化 
[1] 肖玉杰,邱志明,石章松. UUV国内外研究现状及若干关键问题综述[J]. 电光与控制,2014,21(2):46-49,89. doi: 10.3969/j.issn.1671-637X.2014.02.011 XIAOYu-jie, QIUZhi-ming, SHIZhang-song. On current research status of UUV and its critical technologies[J]. Electronics Optics & Control, 2014, 21 (2): 46-49, 89.
[2] 王蓬. 军用UUV的发展与应用前景展望[J]. 水下无人系统学报,2009,17(1):5-9. doi: 10.3969/j.issn.1673-1948.2009.01.002 WANGPeng. Current development status and future application of navy UUVs[J]. Journal of Unmanned Undersea Systems, 2009, 17(1): 5-9.
[3] 钱东,赵江,杨芸. 军用UUV发展方向与趋势(上):美军用无人系统发展规划分析解读[J]. 水下无人系统学报,2017,25(1):1-30. doi: 10.11993/j.issn.2096-3920.2017.01.001 QIANDong, ZHAOJiang, YANGYun. Development trend of military UUV(1): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 1-30.
[4] 熊传志,武雷. 大直径UUV耐压壳体的结构设计[J]. 水雷战与舰船防,2015,23(2):29-34. XIONGChuan-zhi, WULei. Structural design of large diameter UUV pressure hull[J]. Mine Warfare & Ship-Defence, 2015, 23(2): 29-34.
[5] 吕春雷,王晓天,姚文,等. 多种型式肋骨加强的耐压圆柱壳体结构稳定性研究[J].船舶力学,2006,10(5):113-118. doi: 10.3969/j.issn.1007-7294.2006.05.016 Chun-leiLü, WANGXiao-tian, YAOWen, et al. Study of buckling of cylindrical shell ring-stiffened by manifold stiffeners under hydrostatic pressure[J]. Journal of Ship Mechanics, 2006, 10(5): 113-118.
[6] 刘培婧,刘均,陈杰,等.具有特殊肋骨型式的耐压壳体强度与极限承载能力分析[J]. 中国舰船研究,2014,9(2):30-36. doi: 10.3969/j.issn.1673-3185.2014.02.006 LIUPei-jing, LIUJun, CHENJie, et al. Strength and ultimate carrying capacity analysis of cylindrical shells with special ribs[J]. Chinese Journal of Ship Research, 2014, 9(2): 30-36.
[7] 操安喜,崔维成. 基于响应面模型和遗传算法的载人潜水器耐压球壳优化设计[C/OL]//船舶结构力学学术会议论文集. 北京:中国造船工程学会,2005:332-339. 2014-05-20)[2019-06-01]. http://www.doc88.com/p-5187167782705.html.
CAOAn-xi, CUIWei-cheng. Response surface and genetic algorithm based optimal design of the pressure spherical hull in deep manned submersible[C/OL]// Proceedings of the Academic Conference on Ship Structural Mechanics. Beijing: The Chinese Society of Naval Rachitects and Marine Engineers, 2005: 332-339. 2014-05-20)[2019-06-01]. http://www.doc88.com/p-5187167782705.html.
[8] 杨岳,何雪浤,谷海涛,等. 水下机器人耐压壳体结构优化[J]. 机械科学与技术,2016,35(4):614-619. doi:10.13433/j.cnki.1003-8728.2016.0421 YANGYue, HEXue-hong, GUHai-tao, et al. Structure optimization of underwater robot pressure hull[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(4): 614-619.
[9] 宋保维,朱崎峰,王鹏. 基于组合优化方法的UUV耐压壳体优化设计研究[J]. 机械科学与技术,2010,29(5): 561-565. doi:10.13433/j.cnki.1003-8728.2010.05.020 SONGBao-wei, ZHUQi-feng, WANGPeng. Optimization design for unmaned underwater vechile (UUV) shell based on combinatorial optimization methods[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5): 561-565.
[10] 董华超,宋保维,王鹏. 水下航行器壳体结构多目标优化设计研究[J]. 兵工学报,2014,35(3):392-397. doi: 10.3969/j.issn.1000-1093.2014.03.015 DONGHua-chao, SONGBao-wei, WANGPeng. Multi-objective optimal design of automatic underwater vehicle shell structure[J]. Acta Armamentarii, 2014, 35(3): 392-397.
[11] 苗怡然,高良田,梁旭,等. 水下航行器耐压壳体参数化设计优化[J]. 大连海事大学学报,2017,43(2):33-38.doi:10.16411/j.cnki.issn1006-7736.2017.02.006 MIAOYi-ran, GAOLiang-tian, LIANGXu, et al. Parametric optimization design of pressure hull for automatic underwater vehicle[J]. Journal of Dalian Maritime University, 2017, 43(2): 33-38.
[12] 隋允康,宇慧平. 响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,201l:8-10. Yun-kangSUI, YUHui-ping. The improved response surface method and its application to engineering[M]. Beijing: Science Press, 2011: 8-10.
[13] RAOS S, FREIHEITT I. A modified game theory approach to multiobjective optimization[J]. Journal of Mechanical Design, 1991, 113(3): 286-291. doi: 10. 1115/1.2912781
[14] 秦浩星,杨德庆. 多工况结构拓扑优化的灰色权重折衷规划模型法[J]. 力学季刊,2018,39(2):280-293. doi:10.15959/j.cnki.0254-0053.2018.02.006 QINHao-xing, YANGDe-qing. Compromise programming approach with grey weight factor for structural topology optimization under multiple load conditions[J]. Chinese Quarterly of Mechanics, 2018, 39(2): 280-293.
[15] 费智聪. 熵权-层次分析法与灰色-层次分析法研究[D]. 天津:天津大学管理学院,2009:23-25. FEIZhi-cong. Research on entropy weight-analytic hierarchy process and grey-analytic hierarchy process[D]. Tianjin: Tianjin University, College of Management, 2009: 23-25.
[16] SUBRAMANIANN, RAMANATHANR. A review of applications of analytic hierarchy process in operations management[J]. International Journal of Production Economics, 2012, 138(2): 215-241. doi:10.1016/j.ijpe.2012.03.036
[17] 鲁鹏,耿文豹. 海洋探测型AUV壳体设计与强度校核[J]. 舰船科学技术,2015,37(5):119-121. doi:10.3404/j.issn.1672-7649.2015.05.025 LUPeng, GENGWen-bao. Design and strength check of pressure hull of ocean exploration AUV[J]. Ship Science and Technology, 2015, 37(5): 119-121.
[18] 孟令帅,林扬,郑荣,等. 模块化自主水下机器人的机械设计与实现[J]. 机器人,2016,38(4):395-401. doi:10.13973/j.cnki.robot.2016.0395 MENGLing-shuai, LINYang, ZHENGRong, et al. Mechanical design and implementation of a modular autonomous underwater vehicle[J]. Robot, 2016, 38(4): 395-401.
[19] 中国船级社.潜水系统和潜水器入级与建造规范2018[M]. 北京:人民交通出版社,2018:20-29. China Classification Society. Rules for classification of diving systems and submersibles 2018 [M]. Beijing: China Communications Press, 2018: 20-29.
[1] WEI Wei, LIN Zai-sheng. Research on optimization design method of customized product based on RIR-MOO[J]. Chinese Journal of Engineering Design, 2020, 27(5): 592-599.
[2] SU Fang, LUO Ru-nan, LIU Yan-ming, WANG Chen-sheng. Design and research on biaxial linkage feed system based on multi-objective optimization[J]. Chinese Journal of Engineering Design, 2020, 27(4): 456-462.
[3] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[4] WANG Zhe, CHEN Yong, CAO Zhan, LI Guang-xin, ZUO Kou-cheng. Research on vibration and noise reduction of two-speed transmission of pure electric vehicle[J]. Chinese Journal of Engineering Design, 2019, 26(3): 280-286.
[5] YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang. Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model[J]. Chinese Journal of Engineering Design, 2018, 25(4): 426-433.
[6] CHEN Hong-wu, PENG Cong-cong, TIAN Cheng, WANG Li-yuan. Optimal design for truss structure shape based on response surface method[J]. Chinese Journal of Engineering Design, 2018, 25(4): 457-464.
[7] YANG Shao-yong, LEI Fei, CHEN Yuan. Structure optimization of a carbon fiber reinforced composite suspension control arm based on the lay up design features[J]. Chinese Journal of Engineering Design, 2016, 23(6): 600-605,619.
[8] WU Si-min, MENG Wen-jun, LI Shu-jun, WANG Yao, XU Cheng-gong. Design and optimization of a novel magnetorheological brake with double coils placed on the side housing[J]. Chinese Journal of Engineering Design, 2016, 23(5): 453-460.
[9] . Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.
[10] LI Li-Juan, HUANG Zhen-Hua, LIU Feng. An improved multi-objective group search optimization algorithm applied to structural optimal design[J]. Chinese Journal of Engineering Design, 2013, 20(1): 11-17.
[11] JIN Ya-juan,ZHANG Yi-min. Reliability-based robust optimization design for mechanical structural by saddle point approximation[J]. Chinese Journal of Engineering Design, 2012, 19(2): 81-85.
[12] LU Qing-Bo, ZHANG Xue-Liang, WEN Shu-Hua, LAN Guo-Sheng, LIU Li-Qin. Mechanical electronics system reliability multi-objective optimization design based on differential evolution algorithm and multiple attribute decision making[J]. Chinese Journal of Engineering Design, 2011, 18(6): 412-417.
[13] QIAN Xue-Yi, WU Shuang. Multi-objective optimization of the non-symmetrical gear agglutinate strength based on elastohydrodynamic lubrication theory[J]. Chinese Journal of Engineering Design, 2010, 17(6): 426-429.
[14] LIU Ren-Yun, YU Fan-Hua, ZHANG Yi-Min. Reliability-based robust optimization design for torsion bar with multi-objective decision-making[J]. Chinese Journal of Engineering Design, 2010, 17(3): 181-185.
[15] NIE Xiang-Hong, YU Xiao-Li, HU Jun-Qiang, CHEN Ping-Lu. Influence of inlet and outlet valve's open timing on pneumatic engine and their optimal design[J]. Chinese Journal of Engineering Design, 2009, 16(1): 16-20.