Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (5): 453-460    DOI: 10.3785/j.issn.1006-754X.2016.05.008
    
Design and optimization of a novel magnetorheological brake with double coils placed on the side housing
WU Si-min1,2, MENG Wen-jun1,2, LI Shu-jun1,2, WANG Yao1,2, XU Cheng-gong1,2
1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. Shanxi Key Laboratory of Intelligent Logistics Equipment, Taiyuan 030024, China
Download: HTML     PDF(3243KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the braking torque of conventional hybrid magnetorheological brake(MRB) with single coil, a novel MRB with double coils placed on the side housing is proposed. The novel structure enabled it to have larger area of controllable interaction face in cylindrical surface of brake disk and a larger braking torque. The torque model and design method of magnetic circuit of the novel MRB were proposed based on Herscher-Bulkley model. And then a multi-objective optimization under the specific condition was conducted. Comparative analysis between conventional and novel MRB demonstrated that under the condition of the same volume, the novel MRB had a larger braking torque. And in order to make full advantage of the rheological properties of MRF and get a more compact structure, the width of the brake should be 80-100 mm and the reasonable range of the length-width ratio should be 0.6-1.2. After optimization, the braking torque was increased by 11% in the situation which its weight basically remained unchanged. The results can be taken as reference to the design of MRB.



Key wordsmagnetorheological brake      braking torque      magnetic circuit design      multi-objective optimization     
Received: 08 March 2016      Published: 28 October 2016
CLC:  TH133.4  
Cite this article:

WU Si-min, MENG Wen-jun, LI Shu-jun, WANG Yao, XU Cheng-gong. Design and optimization of a novel magnetorheological brake with double coils placed on the side housing. Chinese Journal of Engineering Design, 2016, 23(5): 453-460.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.05.008     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I5/453


双线圈旁置式新型磁流变制动器的设计与优化

为提高传统单线圈混合式磁流变制动器的制动力矩,提出了一种双线圈旁置式新型磁流变制动器.利用一种新的线圈安装方式,增大了制动盘圆柱面的可控作用面积,从而增大了磁流变制动器的制动力矩.基于Herscher-Bulkley模型,提出了双线圈旁置式磁流变制动器的力矩模型与磁路设计方法,并在特定条件下对其进行了多目标优化.研究结果表明:与单线圈混合式相比,在相同体积条件下,双线圈旁置式能产生更大的制动力矩;而为了充分利用磁流变液的流变性能,获得更紧凑的结构,双线圈旁置式磁流变制动器的宽度应在80~100 mm之间,长宽比的合理范围应在0.6~1.2之间;优化后在制动器质量基本维持不变的情况下,制动力矩提高了11%.研究结果可作为磁流变制动器的设计参考.


关键词: 磁流变制动器,  制动力矩,  磁路设计,  多目标优化 

[1] GUDMUNDSSON K H, JONSDOTTIR F, THORSTEINSSON F. A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee[J]. Smart Materials and Structures, 2010, 19(19): 335-341.
[2] SENKAL D, GUROCAK H, KONUKSEVEN E I. Passive haptic interface with mr-brakes for dental implant surgery[J]. Presence: Teleoperators and Virtual Environments, 2011, 20(3): 207-222.
[3] MA L, YU L, SONG J, et al. Design, testing and analysis of a novel multiple-disc magnetorheological braking applied in vehicles[R]. SAE Paper No.2014-01-2534, SAE International Congress, Brake Colloquium & Exhibition-32nd Annual Burlingame, 2014.
[4] 李志华,喻军,曾宁,等. 圆盘式磁流变制动器仿真优化设计[J]. 农业机械学报, 2015, 46(10):364-369. LI Zhi-hua, YU Jun, ZENG Ning, et al. Simulation and optimization design of disc-type magnetorheological brake[J].Transactions of the Chinese Society for Agricultural Machinery, 2015, 10(46):364-369.
[5] 李志华,林阳,朱丰友,等. 圆筒式磁流变制动器结构与磁路耦合的优化设计[J]. 工程设计学报,2009,16(4): 261-265. LI Zhi-hua, LIN Yang, ZHU Feng-you, et al. Optimization design of structure and magnetic circuit for drum-type magnetorheological brake[J].Chinese Journal of Engineering Design, 2009, 16(4):261-265.
[6] SONG B K, NGUYEN Q H, CHOI S B, et al. The impact of material and design on magnetorheological brake performance[J]. Smart Materials and Structures, 2013, 22(10): 426-437.
[7] WANG D M, HOU Y F, TIAN Z Z. A novel high-torque magnetorheological brake with a water cooling method for heat dissipation[J]. Smart Materials and Structures, 2013, 22(22): 25019-25029.
[8] NGUYEN Q H, CHOI S B. Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat[J]. Smart Materials and Structures, 2010, 19(11): 161-167.
[9] KIKUCHI T, KOBAYASHI K. Design and development of cylindrical MR fluid brake with multi-coil structure[J]. Journal of System Design and Dynamics, 2011, 5(7): 1471-1484.
[10] SHIAO Y, NGUYEN Q A, ZHANG Z. Design and experiment of a new magnetorheological brake[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 48(4): 1-18.
[11] FARJOUD A, YAHDATI N, FAH Y F. Mathematical model of drum-type MR brakes using herschel-bulkley shear model[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(5): 565-572.
[12] 沙树静,张贺,张和权. 双盘式磁流变制动器的结构设计和性能研究[J]. 机械设计与制造,2015,(11):100-102. SHA Shu-jing, ZHANG He, ZHANG He-quan. Structure design and performance research of dual disk magnetorheological brake[J]. Machinery Design & Manufacture, 2015,(11):100-102.
[13] SOHN J W, JEON J, NGUYEN Q H, et al. Optimal design of disc-type magneto-rheological brake for mid-sized motorcycle: experimental evaluation[J]. Smart Materials and Structures, 2015, 24(8): 209-223.
[14] 李楠,王明辉,马书根,等. 基于多目标遗传算法的水陆两栖可变形机器人结构参数设计方法[J]. 机械工程学报,2012,(17):10-20. LI Nan, WANG Ming-hui, MA Shu-gen, et al. Mechanism-parameters design method of an a mphibious transformable robot based on multi-objective genetic algorithm[J]. Journal of Mechanical Engineering, 2012, (17):10-20.
[15] HUANG J. Combining entropy weight and TOPSIS method for information system selection[C]//Cybernetics and Intelligent Systems, 2008 IEEE Conference on. IEEE, 2008: 1281-1284.

[1] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[2] WEI Wei, LIN Zai-sheng. Research on optimization design method of customized product based on RIR-MOO[J]. Chinese Journal of Engineering Design, 2020, 27(5): 592-599.
[3] SU Fang, LUO Ru-nan, LIU Yan-ming, WANG Chen-sheng. Design and research on biaxial linkage feed system based on multi-objective optimization[J]. Chinese Journal of Engineering Design, 2020, 27(4): 456-462.
[4] GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure[J]. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.
[5] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[6] WANG Zhe, CHEN Yong, CAO Zhan, LI Guang-xin, ZUO Kou-cheng. Research on vibration and noise reduction of two-speed transmission of pure electric vehicle[J]. Chinese Journal of Engineering Design, 2019, 26(3): 280-286.
[7] YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang. Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model[J]. Chinese Journal of Engineering Design, 2018, 25(4): 426-433.
[8] YANG Shao-yong, LEI Fei, CHEN Yuan. Structure optimization of a carbon fiber reinforced composite suspension control arm based on the lay up design features[J]. Chinese Journal of Engineering Design, 2016, 23(6): 600-605,619.
[9] . Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.
[10] LI Li-Juan, HUANG Zhen-Hua, LIU Feng. An improved multi-objective group search optimization algorithm applied to structural optimal design[J]. Chinese Journal of Engineering Design, 2013, 20(1): 11-17.
[11] JIN Ya-juan,ZHANG Yi-min. Reliability-based robust optimization design for mechanical structural by saddle point approximation[J]. Chinese Journal of Engineering Design, 2012, 19(2): 81-85.
[12] LU Qing-Bo, ZHANG Xue-Liang, WEN Shu-Hua, LAN Guo-Sheng, LIU Li-Qin. Mechanical electronics system reliability multi-objective optimization design based on differential evolution algorithm and multiple attribute decision making[J]. Chinese Journal of Engineering Design, 2011, 18(6): 412-417.
[13] QIAN Xue-Yi, WU Shuang. Multi-objective optimization of the non-symmetrical gear agglutinate strength based on elastohydrodynamic lubrication theory[J]. Chinese Journal of Engineering Design, 2010, 17(6): 426-429.
[14] LIU Ren-Yun, YU Fan-Hua, ZHANG Yi-Min. Reliability-based robust optimization design for torsion bar with multi-objective decision-making[J]. Chinese Journal of Engineering Design, 2010, 17(3): 181-185.
[15] LI Zhi-Hua, LIN Yang, ZHU Feng-You, GUO Lin-Chao. Optimization design of structure and magnetic circuit for drum-type magnetorheological brake[J]. Chinese Journal of Engineering Design, 2009, 16(4): 261-265.