Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (4): 426-433    DOI: 10.3785/j.issn.1006-754X.2018.04.009
    
Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model
YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang
College of Architectural and Civil Engineering, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML     PDF(1120KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Microchannel heat sink has the advantages of high heat transfer efficiency and reliability, and it is useful for cooling micro-scale high heat flux density electronic components. In order to meet the performance requirements and control cost, it is necessary to optimize the heat transfer capability and flow resistance of the microchannel heat sink at the same time. The thermal resistance network model used in the traditional research is relatively simple, which can not well reflect the response of thermal resistance and flow resistance to the topological changes of the microchannel cross-section shape, and the optimization object is usually the size of a given shape section. A single-layer silicon substrate microchannel heat sink thermal resistance network model was proposed by discretization method. The heat sink fins were separated into smaller ones. According to the response of microthermal resistance to the width of microdots, and the contribution of microthermal resistance to the overall thermal resistance, the overall thermal resistance of microchannel was described. Taking the output power of micro-pump as the optimized boundary condition and the pressure drop and thermal resistance as the optimization targets, the size of quadrilateral uniform cross-section silicon substrate heat sink was optimized by SQP (sequential quadratic programming) method. The optimization results were simulated and verified by CFD (computational fluid dynamics). The results showed that the shape of the cross section was rectangular when the height of fin was low, and it gradually turned into a triangle as the height of the fin increased. In the design range, when the microchannel section was trapezoidal, the fin section was triangular, the heat transfer efficiency and pressure drop were ralatively dominant. Under boundary point method and ideal point method, the optimization results of microchannel height, fin width, groove bottom width and groove top width were 500, 50, 64.5, 114.5 μm and 500, 50, 50, 100 μm, respectively. This method can adjust the evaluation function according to the design requirements, meanwhile, the calculation result has important engineering significance and provides reference for designers.



Key wordsfluid-structure interaction      multi-objective optimization      thermal resistance network model      micro-scale cooling heat sink      multi-start search     
Received: 20 November 2017      Published: 28 August 2018
CLC:  TK124  
Cite this article:

YANG Chen-guang, SHAO Bao-dong, WANG Li-feng, YANG Yang. Multi-objective optimization design for silicon substrate microchannel heat sink based on thermal resistance network model. Chinese Journal of Engineering Design, 2018, 25(4): 426-433.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.04.009     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I4/426


基于热阻网络模型的硅基微槽热沉多目标优化设计

微槽热沉具有传热效率高、可靠性强的优点,可用于对微尺度高热流密度电子元件进行冷却。为满足其性能需求和控制成本,在对微槽热沉进行设计时需要对其传热能力和流动阻力同时进行优化。传统研究采用的热阻网络模型较为简单,不能很好地反映热阻和流动阻力对微槽道截面形状拓扑变化的响应,且其优化对象通常为既定截面的形状尺寸。为此提出一种基于离散化方法的单层硅基微槽热沉热阻网络模型,将热沉鳍片细分为厚度较小的微元,根据微元热阻对微元宽度的响应及微元热阻对整体热阻的贡献来描述微槽道的整体热阻。以微泵输出功率为优化边界条件,压降和热阻为优化目标,通过SQP(sequential quadratic programming,序列二次规划)方法对层流状态下四边形等截面硅基微槽热沉进行尺寸优化,利用CFD(computational fluid dynamics,计算流体动力学)对优化结果进行模拟和验证。结果表明,当鳍片高度较低时,鳍片截面形状为矩形,随着鳍高增加,截面形状有向三角形发展的趋势。在设计区间内,微槽道截面为梯形、鳍片截面为三角形时传热效率与压降相对占优。用边界点法和理想点法优化模型求得微槽道高度、鳍底宽、槽底宽、槽顶宽的优化结果分别为500,50,64.5,114.5 μm和500,50,50,100 μm。该方法能根据设计需求调整评价函数,同时计算结果具有重要工程意义,为微槽热沉设计人员提供参考。


关键词: 流固耦合,  多目标优化,  热阻网络模型,  微尺度冷却热沉,  多起点搜索 
[[1]]   TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5):126-129.
[[2]]   SHAH R K, LONDON A L. Laminar flow forced convection in ducts:a source book for compact heat exchanger analytical data[M]. Salt Lake City:Academic Press, 1978:431-455.
[[3]]   夏国栋,柴磊,齐景智.梯形硅基微通道热沉流体流动与传热特性研究[J].北京工业大学学报,2011,37(7):1079-1084. XIA Guo-dong, CHAI Lei, QI Jing-zhi. Study on flow and heat transfer characteristics of trapezoidal silicon-based microchannel heat sink fluid[J]. Journal of Beijing University of Technology, 2011, 37(7):1079-1084.
[[4]]   WU H Y, CHENG P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios[J]. International Journal of Heat & Mass Transfer, 2003, 46(14):2519-2525.
[[5]]   QU W, MALA G M, LI D. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat & Mass Transfer, 2000, 43(3):353-364.
[[6]]   SALIMPOUR M R, SHARIFHASAN M, SHIRANI E. Constructal optimization of the geometry of an array of micro-channels[J]. International Communications in Heat & Mass Transfer, 2011, 38(1):93-99.
[[7]]   WANG Z H, WANG X D, YAN W M, et al. Multi-parameters optimization for microchannel heat sink using inverse problem method[J]. International Journal of Heat & Mass Transfer, 2011, 54(13):2811-2819.
[[8]]   JEEVAN K, QUADIR G A, SEETHARAMU K N, et al. Optimization of thermal resistance of stacked micro-channel using genetic algorithms[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2005, 15(1):27-42.
[[9]]   LIU D, GARINELLA S V. Analysis and optimization of the thermal performance of microchannel heat sinks[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2003, 15(1):7-26.
[[10]]   邵宝东,孙兆伟,王丽凤.热阻网络模型在微槽冷却热沉优化设计中的应用[J].吉林大学学报(工学版),2007,37(6):1263-1267. SHAO Bao-dong, SUN Zhao-wei, WANG Li-feng. Application of thermal resistance net model in optimization design of microchannel cooling heat sink[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(6):1263-1267.
[[11]]   GUO Z Y. Characteristics of microscale fluid flow and heat transfer[C]//MEMS Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale, Buff, Oct.15-20, 2000.
[[12]]   WANG B X, PENG X F. Experimental investigation on liquid forced-convection heat transfer through microchannels[J]. International Journal of Heat & Mass Transfer, 1994, 37(S1):73-82.
[[13]]   邵宝东,孙兆伟,王丽凤.微槽冷却热沉结构尺寸的优化设计[J].吉林大学学报(工学版),2007,37(2):313-318. SHAO Bao-dong, SUN Zhao-wei, WANG Li-feng. Optimization design of microchannel cooling heat sink[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2):313-318.
[[14]]   魏琪.基于熵产最小的微槽冷却热沉优化设计[C]//中国数学力学物理学高新技术交叉研究学会第十二届学术年会论文集.[2017-11-10].http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6765198. WEI Qi. Entropy production-based optimum design of microchannel heat sink[C]//Proceedings of Annual Conference of Chinese Institute of Research for Mathematics, Mechanics, Physics and High New Technology.[2017-11-10].http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=6765198.
[[15]]   CHAI Lei, XIA Guo-dong, HUA Sheng-wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls[J]. Applied Thermal Engineering, 2016, 92:32-41.
[[16]]   蔡奇彧,徐尚龙,吴益昊.三维硅基微通道散热器优化设计与数值分析[C]//电子机械与微波结构工艺学术会议论文集.[2017-11-10].http://xueshu.baidu.com/s?wd=paperuri:(bbd6e2b4630624c6bd83d0107489d6ff)&filter=sc_long_sign&sc_ks_para=q%3D三维硅基微通道散热器优化设计与数值分析&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=4679032634342608770. CAI Qi-yu, XU Shang-long, WU Yi-hao. Optimum design and numerical analysis of three-dimensional silicon-based microchannel radiator[C]//Proceedings of the Progress of Electromechanical and Microwave Structures.[2017-11-10].http://xueshu.baidu.com/s?wd=paperuri:(bbd6e2b4630624c6bd83d0107489d6ff)&filter=sc_long_sign&sc_ks_para=q%3D三维硅基微通道散热器优化设计与数值分析&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_us=4679032634342608770.
[[17]]   HUANG Shan-bo, ZHAO Jin, GONG Liang, et al. Thermal performance and structure optimization for slotted microchannel heat sink[J]. Applied Thermal Engineering, 2017, 115:1266-1276.
[1] Fangjian DOU,Qingying QIU,Cheng GUAN,Jinjie SHAO,Haifeng WU. Optimization design of acceleration and deceleration curve of winding machine with large moment of inertia[J]. Chinese Journal of Engineering Design, 2023, 30(4): 503-511.
[2] Jiang LIU,Zheng-ming XIAO,Long-long ZHANG,Wei-biao LIU. Transmission accuracy reliability analysis and parameter optimization of RV reducer considering cycloid gear wear[J]. Chinese Journal of Engineering Design, 2022, 29(6): 739-747.
[3] Qin LI,Ying-qi JIA,Yu-feng HUANG,Gang LI,Chuang YE. A multi-objective trajectory optimization algorithm for industrial robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 187-195.
[4] WEI Wei, LIN Zai-sheng. Research on optimization design method of customized product based on RIR-MOO[J]. Chinese Journal of Engineering Design, 2020, 27(5): 592-599.
[5] SU Fang, LUO Ru-nan, LIU Yan-ming, WANG Chen-sheng. Design and research on biaxial linkage feed system based on multi-objective optimization[J]. Chinese Journal of Engineering Design, 2020, 27(4): 456-462.
[6] GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure[J]. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.
[7] ZHANG Shuai, HAN Jun, TU Qun-zhang, YANG Xiao-qiang, YANG Xuan. Multi-objective optimization design of deployable mechanism of scissor folding bridge based on GA-NLP[J]. Chinese Journal of Engineering Design, 2020, 27(1): 67-75.
[8] WANG Zhe, CHEN Yong, CAO Zhan, LI Guang-xin, ZUO Kou-cheng. Research on vibration and noise reduction of two-speed transmission of pure electric vehicle[J]. Chinese Journal of Engineering Design, 2019, 26(3): 280-286.
[9] DENG Xiao-lei, PANG Shi-jie, LI Rui-qi, ZHOU Yi-bo, WANG Jian-chen, FU Jian-zhong. Thermal design of cooling structure for CNC machine tool spindle system based on insect wing vein bionic channel[J]. Chinese Journal of Engineering Design, 2018, 25(5): 583-589.
[10] YANG Shao-yong, LEI Fei, CHEN Yuan. Structure optimization of a carbon fiber reinforced composite suspension control arm based on the lay up design features[J]. Chinese Journal of Engineering Design, 2016, 23(6): 600-605,619.
[11] WU Si-min, MENG Wen-jun, LI Shu-jun, WANG Yao, XU Cheng-gong. Design and optimization of a novel magnetorheological brake with double coils placed on the side housing[J]. Chinese Journal of Engineering Design, 2016, 23(5): 453-460.
[12] . Multi-objective optimization software development and application[J]. Chinese Journal of Engineering Design, 2015, 22(3): 262-268.
[13] ZHENG Chuan-xiang,LI Rong,WANG Liang,WEI Zong-xin,LIU Yuan-feng. Fluid-structure interaction analysis and optimization study of suction valves in small refrigeration compressors[J]. Chinese Journal of Engineering Design, 2014, 21(1): 68-74.
[14] LI Li-Juan, HUANG Zhen-Hua, LIU Feng. An improved multi-objective group search optimization algorithm applied to structural optimal design[J]. Chinese Journal of Engineering Design, 2013, 20(1): 11-17.
[15] JIN Ya-juan,ZHANG Yi-min. Reliability-based robust optimization design for mechanical structural by saddle point approximation[J]. Chinese Journal of Engineering Design, 2012, 19(2): 81-85.