Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (5): 539-545    DOI: 10.3785/j.issn.1006-754X.2018.05.007
    
Design and dynamic simulation research of self-adaptive bobbin gripper for automatic doffer
ZHANG Zhao1, ZHANG Ji-zhong2
1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China;
2. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
Download: HTML     PDF(2374KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the efficiency and reliability of automatic doffer, enhance the ability to automatically adapt to the mounting errors of the spindle and reduce the power consumption in the working process, a new type of self-adaptive bobbin gripper was designed by using the mechanism expansion method. Firstly, a two-degree-of-freedom main mechanism was constructed, it was extended by adding 3 components to form parallelogram mechanism so as to realize the mechanism variation. Then, the kinematic sketch of self-adaptive bobbin gripper was obtained. The mounting error of the spindle was automatically adapted by the swing of floating connection plate. By using of the working characteristics of parallel quadrilateral mechanism, the functions of pre-clamping and loosening bobbin were completed. On the basis of the structure design, the force analysis of the self-adaptive bobbin gripper was carried out. Finally, based on SolidWorks Motion, the dynamic simulation model of the self-adaptive bobbin gripper was built, and the contact force of the bobbin was simulated and calculated in different installation conditions of the spindle. The results showed that when the spindle was properly installed, the enough running torque acted on the bobbin to realize the pre-loosening function successfully while clamping the bobbin. In the stable working condition, the contact force between the polyurethane block and the bobbin could meet the requirements. The self-adaptive bobbin gripper had the ability to automatically adapt to the spindle mounting error within a range of -1-1 mm, and the pre-loosening function could be realized while clamping the bobbin. The research results lay the foundation for the design of efficient and reliable automatic doffing device. The working principle and design idea of the self-adaptive bobbin gripper can be used for reference in the design of robot adaptive gripper serving other fields.



Key wordsautomatic doffer      gripper      self-adaptive mechanism      mechanism configuration      simulation analysis     
Received: 14 January 2018      Published: 28 October 2018
CLC:  TH122  
Cite this article:

ZHANG Zhao, ZHANG Ji-zhong. Design and dynamic simulation research of self-adaptive bobbin gripper for automatic doffer. Chinese Journal of Engineering Design, 2018, 25(5): 539-545.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.05.007     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I5/539


自动落纱机自适应纱管夹持器设计及其动力学仿真研究

为了提高自动落纱机的工作效率和可靠性,增强纱管夹持器适应锭子安装误差的能力,减小工作过程中的动力消耗,采用机构扩展法设计了一种自动落纱机自适应纱管夹持器。首先构建了一个二自由度的纱管夹持器主机构,并对机构进行扩展,增加3个杆件使它与原来的构件组成平行四边形机构以实现机构变异,并得到了自适应纱管夹持器的运动简图。该夹持器利用浮动连接板的摆动自动适应锭子的安装误差,利用平行四边形机构的工作特点实现夹紧/预松纱管功能。在完成结构设计的基础上对自适应纱管夹持器进行了静力分析,研究了夹持器的受力情况。基于SolidWorks Motion建立了自适应纱管夹持器的动力学仿真模型,对不同锭子安装误差下夹紧纱管时纱管所受到的接触力进行了仿真计算。结果表明:当锭子准确安装时,在夹紧纱管情况下有足够的旋转力矩作用在纱管上,可实现预松纱管功能;稳定工作状态下安装在夹指中的聚氨酯夹块与纱管的接触力满足要求;自适应纱管夹持器具有在-1~1 mm范围内自动适应锭子安装误差的能力,并在夹紧纱管时可以实现预松纱管功能。研究成果为设计高效、可靠的自动落纱机拔管装置奠定了基础。自适应纱管夹持器的工作原理和设计思想对设计服务于其他领域的机器人自适应夹持器有一定的借鉴意义。


关键词: 自动落纱机,  夹持器,  自适应机构,  机构构型,  仿真分析 
[[1]]   冯世亮,何勇.自动落纱系统机械手的运动分析与机构设计[J].制造业自动化,2013,35(8):73-78. FENG Shi-liang, HE Yong. The motion analysis and the mechanical design of manipulators on automatic doffering system[J]. Manufacturing Automation, 2013, 35(8):73-78.
[[2]]   王军,肖志权.基于TRIZ理论的自动落纱机创新设计[J].机械,2013,40(1):63-67. WANG Jun, XIAO Zhi-quan. Creative design of auto doffer machine on TRIZ[J]. Machinery, 2013, 40(1):63-67.
[[3]]   阮运松,索双富,贾军政,等.环锭纺智能落纱机落纱过程的力学分析与机构设计研究[J].纺织器材,2013,40(4):1-5. RUAN Yun-song, SUO Shuang-fu, JIA Jun-zheng, et al. The mechanical analysis of the doffing process and the mechanical design of the robot doffer in the ring spinning process[J]. Textile Accessories, 2013, 40(4):1-5.
[[4]]   何雪军,王进,陆国栋,等.自锁式茶梗夹持器设计[J].农业机械学报,2014,45(4):157-162. HE Xue-jun, WANG Jin, LU Guo-dong, et al. Design of self-locking gripper for tea stalks[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4):157-162.
[[5]]   PETTERSSON A, DAVIS S, GRAY J O, et al. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes[J]. Journal of Food Engineering, 2010, 98(3):332-338.
[[6]]   CHOI H, KOC M. Design and feasibility tests of a flexible gripper based on inflatable rubber pockets[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12/13):1350-1361.
[[7]]   LI Xin, KAGAWA T. Development of a new noncontact gripper using swirl vanes[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):63-70.
[[8]]   DAVIS S, GRAY J O, CALDWELL D G. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables[J]. Robotics and Computer-integrated Manufacturing, 2008, 24(2):249-257.
[[9]]   KYUNG J H, KO B G, HA Y H, et al. Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges[J]. Sensors and Actuators A, 2008, 141(1):144-150.
[[10]]   AGNUS J, HÉRIBAN D, GAUTHIER M, et al. Silicon end-effectors for microgripping tasks[J]. Precision Engineering, 2009, 33(4):542-548.
[[11]]   莫建清,黄茂林,杜力,等.自适应机构的综合方法[J].中国机械工程,2004,15(18):1661-1665. MO Jian-qing, HUANG Mao-lin, DU Li, et al. Synthesis methods of self-adaptive mechanism[J]. China Mechanical Engineering, 2004, 15(18):1661-1665.
[[12]]   张俊强,周军,丁希仑.一种自适应二指夹持器的设计及应用[J].机电工程,2008,25(5):5-8. ZHANG Jun-qiang, ZHOU Jun, DING Xi-lun. Design and application of adaptive bi-finger gripper[J]. Mechanical & Electrical Engineering, 2008, 25(5):5-8.
[[13]]   章军.六关节三指苹果抓取机械手的自适应柔性分析[J].农业工程学报,2010,26(1):140-144. ZHANG Jun. Analysis of adaptive flexibility of three-finger manipulator with six-joint for grasping apple[J]. Transactions of the CSAE, 2010, 26(1):140-144.
[[14]]   李凯,张俊俊,刘满禄.两指自适应机械夹持器设计与研究[J].制造业自动化,2016,38(10):39-43. LI Kai, ZHANG Jun-jun, LIU Man-lu. Design and research of two fingers adaptive mechanical gripper[J]. Manufacturing Automation, 2016, 38(10):39-43.
[[15]]   张继忠,张钊,刘曙光.一种自动落纱机用的旋搓式夹紧装置:201310269424.3[P].2015-05-27. ZHANG Ji-zhong, ZHANG Zhao, LIU Shu-guang. An automatic doffing machine with rotary rubbing type clamping device:201310269424.3[P]. 2015-05-27.
[[16]]   黄纯颖,高志.机械创新设计[M].北京:高等教育出版社,2005:148-155. HUANG Chun-ying, GAO Zhi. Innovative design for machinery[M]. Beijing:Higher Education Press, 2005:148-155.
[[17]]   陈超祥,胡其登.SOLIDWORKS Motion运动仿真教程[M].北京:机械工业出版社,2016:60-72. CHEN Chao-xiang, HU Qi-deng. SOLIDWORKS Motion simulation tutorial[M]. Beijing:China Machine Press, 2016:60-72.
[1] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[2] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[3] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[4] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[5] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.
[6] CHEN Zhen, XIONG Tao, YANG Yan-qing, XUE Xiao-wei. Sealing performance analysis and structure optimization of sealing ring of soluble ball seat[J]. Chinese Journal of Engineering Design, 2021, 28(6): 720-728.
[7] YU Ru-fei, KOU Xin, CHEN Wei. Simulation analysis of novel surface texture based on CFD[J]. Chinese Journal of Engineering Design, 2021, 28(4): 466-472.
[8] WANG Yu-pu, CHENG Wen-ming, DU Run, WANG Shu-biao, YANG Xing-zhou, ZHAI Shou-cai. Simulation analysis of wind load response for large gantry crane[J]. Chinese Journal of Engineering Design, 2020, 27(2): 239-246.
[9] HAO Di-long, HE Xia, WANG Guo-rong, YI Jian-guo, CHEN Zhang-bin. Structure optimization of integral slip groove[J]. Chinese Journal of Engineering Design, 2019, 26(5): 534-543.
[10] WANG Ke-fei, SHI Pei-cheng, PENG Shan-shan, DIAO Jie-sheng. Static stiffness analysis of automotive BIW under different boundary constraint conditions[J]. Chinese Journal of Engineering Design, 2019, 26(4): 441-451.
[11] CHEN Zhao-ming, XU Ze-yu, ZOU Jing-song, ZHAO Ying, SHI Ming-quan. Hydraulic system design of multi-functional laying trolley equipment in tunnel construction and its response characteristic analysis[J]. Chinese Journal of Engineering Design, 2019, 26(1): 116-122.
[12] LU Qing-hua, HUANG Ming-xian, CHEN Wei-lin. Multi-mode parametric optimization design of planar damped underactuated gripper[J]. Chinese Journal of Engineering Design, 2018, 25(6): 690-696.
[13] FAN Shu-yuan, WANG Hai-bo, WU Xiao-di, ZHANG Le, ZHANG Long. Research on load-bearing performance of industrial assembly exoskeleton manipulator[J]. Chinese Journal of Engineering Design, 2018, 25(6): 697-702.
[14] SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo. Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig[J]. Chinese Journal of Engineering Design, 2017, 24(3): 323-329.
[15] LIU Xiao-long, ZHAO Yan-jun, GE Wen-qing, WANG Ying, ZHANG Zhong-dong. Design and dynamics simulation analysis of medical disabled lower limb exoskeleton[J]. Chinese Journal of Engineering Design, 2016, 23(4): 327-332.