Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (3): 323-329    DOI: 10.3785/j.issn.1006-754X.2017.03.012
    
Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig
SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo
State Key Lab of Fliud Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1867KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A Gripper and Thrust hydraulic system with the function of Load-Sensing, Constant Pressure control and auxiliary support of accumulator (LSCPGT) was proposed to overcome the problem of high relief loss in the hard rock Tunnel Boring Machine (TBM) gripper and thrust system after gripper reached a preset pressure. Model of LSCPGT system was established by AMESim. The pressure and flow responses of LSCPGT system were analyzed, and the pressure and flow responses of Constant Pressure Gripper (CPG) system were compared with that in gripper system, and the pressure and flow responses of Load-Sensing Thrust (LST) system and Ration Thrust (RT) system were compared with that in thrust system. The results indicated that LST system and LSCPGT system had no flow loss during the thrust process. In gripper system, the CPG system had certain flow loss under the support condition, but the LSCPGT system had no flow loss with the help of accumulator. Moreover, compared with the gripper and thrust system composed of LST system and CPG system, LSCPGT system improved at least 43.5% in efficiency after gripper reached preset pressure. The designed LSCPGT system which meets the demand of gripper and thrust can save energy through avoiding flow loss.



Key wordsTBM      gripper and thrust system      load-sensing      constant pressure control      accumulator      energy-saving      AMESim simulation     
Received: 09 December 2016      Published: 28 June 2017
CLC:  TH137  
  U455.3  
Cite this article:

SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo. Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig. Chinese Journal of Engineering Design, 2017, 24(3): 323-329.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.03.012     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I3/323


TBM试验台支撑推进节能系统设计与仿真分析

针对全断面硬岩隧道掘进机(hard rock tunnel boring machine,简称TBM)在撑靴以设定压力撑紧围岩后支撑推进系统存在较大流量损失的问题,设计出一种具有负载敏感、恒压控制和蓄能器辅助支撑功能的支撑推进(简称LSCPGT)系统。利用AMESim软件搭建了LSCPGT系统模型,仿真分析了LSDRGT系统在变推进负载下的压力流量响应,并对比分析了在支撑工况下LSCPGT系统和恒压控制泵型支撑(constant pressure gripper,CPG)系统,以及在推进工况下LSCPGT系统与负载敏感泵型推进(load-sensing thrust,LST)系统和定量泵型推进(ration thrust,RT)系统的压力流量响应.结果表明:LST系统和LSCPGT系统在推进过程中都没有流量损失;CPG系统在支撑工况下存在流量损失,而LSCPGT系统由于蓄能器的保压作用没有流量损失;相对于LST系统+CPG系统的支撑推进系统,LSCPGT系统在撑靴达到设定压力后效率至少可提高43.5%。所设计的LSCPGT系统在满足支撑推进要求的同时,避免了流量损失,具有较好的节能效果。


关键词: TBM,  支撑推进系统,  负载敏感,  恒压控制,  蓄能器,  节能,  AMESim仿真 
[[1]]   杜彦良, 杜世杰.全断面岩石隧道掘进机: 系统原理与集成设计[M].武汉: 华中科技大学出版社, 2011: 1-16. DU Yan-liang, DU Shi-jie. Full face hard rock tunnel boring machine: system principles and integrated design[M]. Wuhan: Huazhong University of Science and Technology Press, 2011: 1-16.
[[2]]   杜士斌, 揣连成.开敞式TBM的应用[M].北京: 中国水利水电出版社, 2011: 1-26. DU Shi-bin, CHUAI Lian-cheng. The application of open-type TBM[M]. Beijing: China Water & Power Press, 2011: 1-26.
[[3]]   施虎, 杨华勇, 龚国芳, 等.盾构掘进机关键技术及模拟试验台现状与展望[J].浙江大学学报(工学版), 2013, 47(5): 741-749. SHI Hu, YANG Hua-yong, GONG Guo-fang, et al. Key technologies of shield tunnel machine and present status and prospect of test rigs for tunneling simulation[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(5): 741-749.
[[4]]   周鸿彬, 龚国芳, 王林涛, 等.Ø1.2 m缩尺实验盾构机械结构与液压系统设计[J].工程设计学报, 2014, 21(2): 185-190. ZHOU Hong-bin, GONG Guo-fang, WANG Lin-tao, et al. Mechanical structure and hydraulic system design of Ø1.2 m simulated shield machine[J]. Chinese Journal of Engineering Design, 2014, 21(2): 185-190.
[[5]]   张振, 龚国芳, 饶云意, 等. TBM试验台支撑推进液压系统设计与仿真分析[J]. 工程设计学报, 2015, 22(4): 324-329. ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, et al. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(4): 324-329.
[[6]]   吴根茂, 邱敏秀, 王庆丰, 等.实用电液比例技术[M].杭州: 浙江大学出版社, 2010: 266-282. WU Gen-mao, QIU Min-xiu, WANG Qing-feng, et al. Electrohydraulic proportional technique in theory and application[M]. Hangzhou: Zhejiang University Press, 2010: 266-282.
[[7]]   施虎, 龚国芳, 杨华勇, 等.盾构掘进机推进力计算模型[J].浙江大学学报(工学版), 2011, 45(1): 126-131. SHI Hu, GONG Guo-fang, YANG Hua-yong, et al. Determination of thrust force for shield tunneling machine[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(1): 126-131.
[[8]]   YANG X, GONG G F, YANG H Y, et al. A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 418-426.
[[9]]   YANG Hua-yong, SHI Hu, GONG Guo-fang, et al. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18(7): 950-956.
[[10]]   余佑官.盾构推进电液控制系统研究[D].杭州: 浙江大学机械与能源工程学院, 2006: 10-15. YU You-guan. Research of shield tunneling thrust electro-hydraulic control system[D]. Hangzhou: Zhejiang University, College of Mechanical and Energy Engineering, 2006: 10-15.
[[11]]   刘统, 龚国芳, 张振, 等. TBM试验台刀盘混合驱动系统设计与仿真分析[J]. 工程设计学报, 2015, 22(5): 438-444. LIU Tong, GONG Guo-fang, ZHANG Zhen, et al. Design and simulation analysis of hybrid cutterhead driving system for TBM test bed[J]. Chinese Journal of Engineering Design, 2015, 22(5): 438-444.
[[12]]   HUANG T, WANG X, LIU H, et al. Force analysis of an open TBM gripping-thrusting-regripping mechanism[J]. Mechanism & Machine Theory, 2016, 98: 101-113.
[[13]]   彭欢, 张怀亮, 袁坚, 等.硬岩掘进机比例调速阀选型方法[J].机械工程学报, 2014, 50(21): 92-98. PENG Huan, ZHANG Huai-liang, YUAN Jian, et al. Tunnel boring machine proportional flow control valve Selection method[J]. Journal of Mechanical Engineering, 2014, 50(21): 92-98.
[1] REN Wen, LAI Sen-cai. Design of self-boosting energy-saving control circuit for piezoelectric jacquard warp knitting machine[J]. Chinese Journal of Engineering Design, 2020, 27(3): 326-331.
[2] WANG Fei, GONG Guo-fang, QIN Yong-feng. Controller design for the hybrid cutterhead driving system of TBMunder limited rotational speed condition[J]. Chinese Journal of Engineering Design, 2019, 26(6): 722-727.
[3] LING Jing-xiu, SUN Wei, YANG Xiao-jing, TONG Xin. Vibration response analysis of TBM cutterhead system under multi-point distributed loads[J]. Chinese Journal of Engineering Design, 2017, 24(3): 317-322.
[4] XIE Miao, LIU Zhi-xiang, MAO Jun. Research on control strategy of parking tower hydraulic system and its power-saving technology[J]. Chinese Journal of Engineering Design, 2017, 24(1): 115-120.
[5] FU Si-long, ZHAO Hong-qiang, ZHANG Li-bin, DUAN Yan-hui. Design and experiment on the anti-rebound buffer device of hydraulic rock drill[J]. Chinese Journal of Engineering Design, 2016, 23(5): 513-520.
[6] ZHU Shi-sha, WU Yan-bo, KUANG Ping, LUO Yan-re. Design of a new kind of load-sensing counterbalance valve and installation test[J]. Chinese Journal of Engineering Design, 2016, 23(4): 396-400.
[7] ZHAO Hong-qiang, FU Si-long, ZHOU Mao-xian, CHEN Qing. Design and experiment on the opening at zero position of distribute valve of hydraulic rock drill[J]. Chinese Journal of Engineering Design, 2016, 23(3): 288-294.
[8] LU Feng, ZHANG Chi, SUN Jian, TIAN Jun-xing, LIU Min, WU Yu-hou. Experimental study on rock-breaking simulation of double disc cutter of TBM[J]. Chinese Journal of Engineering Design, 2016, 23(1): 41-48.
[9] LIU Tong, GONG Guo-fang, ZHANG Zhen, PENG Zuo, WU Wei-qiang. Design and simulation analysis of hybrid cutterhead driving system for TBM test bed[J]. Chinese Journal of Engineering Design, 2015, 22(5): 438-444.
[10] MAO Jun, YANG Zhen-hua, LU Jin-nan, XIE Miao. Supporting force control system design for transition process of stepping-type advanced supporting equipment[J]. Chinese Journal of Engineering Design, 2015, 22(5): 387-393.
[11] ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, WU Wei-qiang, LIU Tong. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(5): 324-329.
[12] YANG Qian-ming, KONG Ling-qi, LI Jian, WANG Shi-gang, GUO Jian-wei. Modeling and simulation of synchronous speed control system about electric hydraulic proportional motor[J]. Chinese Journal of Engineering Design, 2015, 22(5): 330-336.
[13] ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, WU Wei-qiang, LIU Tong. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(4): 324-329.
[14] MAO Jun, YANG Zhen-hua, LU Jin-nan, XIE Miao. Supporting force control system design for transition process of stepping-type advanced supporting equipment[J]. Chinese Journal of Engineering Design, 2015, 22(4): 387-393.
[15] YANG Zhong-jiong,LU Yao-zhong,ZHOU Li-qiang,LI Hong-bing. Research on the characteristics of the TBM thrust hydraulic system under fundamental vibration[J]. Chinese Journal of Engineering Design, 2015, 22(3): 278-283.