Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (3): 330-336    DOI: 10.3785/j.issn.1006-754X.2017.03.013
    
Research on synchronous control of shield propulsion system based on single neuron PID
CHEN Kui1,3, NIU Yan-jie2,3, LI Ge-qiang2,3, XU Li-ping2,3, GUO Bing-jing2,3
1. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, China;
2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471000, China;
3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Luoyang 471000, China
Download: HTML     PDF(7039KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking the “Hero” shield machine working in a certain section of Nanchang Metro Line 1 station as the research object, aiming at the problem that conventional PID cannot guarantee the precision of propulsion cylinder synchronous control, the strategy of single neuron PID control was put forward. The physical model of hydraulic propulsion system was established by AMESim, and the single neuron controller was designed by Simulink. Finally, the synchronous control performance of the propulsion cylinder under the condition of different sudden change loads was analyzed by joint simulation. The simulation results showed that compared with conventional PID, the regulating time of the proposed control strategy was shortened about 0.1 s, and the oscillation amplitude was reduced to the original 1/2. From the analysis of results, single neuron PID control can effectively solve the problem of propulsion cylinder synchronous control, which provides an effective theoretical support for the synchronous control of shield propulsion system under adverse geological environment.



Key wordspropulsion system      single neuron      PID      synchronous control     
Received: 30 September 2016      Published: 28 June 2017
CLC:  TH137  
Cite this article:

CHEN Kui, NIU Yan-jie, LI Ge-qiang, XU Li-ping, GUO Bing-jing. Research on synchronous control of shield propulsion system based on single neuron PID. Chinese Journal of Engineering Design, 2017, 24(3): 330-336.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.03.013     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I3/330


基于单神经元PID的盾构推进系统同步控制研究

以在南昌地铁1号线艾溪湖东站至艾溪湖西站区间施工的 “英雄号”盾构机为研究对象,针对盾构在复杂地层施工时,常规PID算法无法满足推进油缸速度同步控制的问题,提出单神经元PID控制策略。通过AMESim建立液压推进系统的物理模型,并利用Simulink设计出单神经元控制器,最后进行联合仿真,分析在不均突变载荷下各区间推进油缸的速度响应特性。仿真结果表明,该控制策略与常规PID相比,调节时间缩短0.1 s左右,振荡幅值减小至原来的1/2内。由此可得,采用单神经元PID控制能够有效地解决推进油缸速度同步性差的问题,为不良地质环境下盾构推进系统的同步控制提供了理论支撑。


关键词: 推进系统,  单神经元,  PID,  同步控制 
[[1]]   陈馈, 洪开荣, 吴学松, 等. 盾构施工技术[M].北京: 人民交通出版社, 2008: 91-93. CHEN Kui, HONG Kai-rong, WU Xue-song. Shield construction technology[M]. Beijing: China Communication Press, 2008: 91-93.
[[2]]   候典清. 盾构推进系统顺应特性及掘进姿态控制研究[D]. 杭州: 浙江大学机械工程学院, 2013: 81-97. HOU Dian-qing. Research on compliance characteristics and attitude control of shield propulsion system[D]. Hangzhou: Zhejiang University, College of Mechanical Engineering, 2013: 81-97.
[[3]]   周如林, 龚国芳, 汪慧, 等. 盾构推进系统专家PID同步控制分析[J]. 中国机械工程, 2010, 21(18): 2202-2206. ZHOU Ru-lin, GONG Guo-fang, WANG Hui, et al. Expert-PID synchronization control of thrust hydraulic system[J]. China Mechanical Engineering, 2010, 21 (18): 2202-2206.
[[4]]   周如林, 龚国芳, 施虎, 等. 盾构推进系统液压缸的同步协调控制[J]. 工程设计学报, 2009, 16(6): 457-461. ZHOU Ru-lin, GONG Guo-fang, SHI Hu, et al. Synchronization coordinated control of the hydraulic cylinder of the thrust system on shield machines[J].Chinese Journal of Engineering Design, 2009, 16(6): 457-461.
[[5]]   胡国良, 刘乐平, 龚国芳, 等. 盾构推进系统同步控制仿真与试验研究[J]. 中国机械工程, 2008, 19(10): 1197-1201. HU Guo-liang, LIU Le-ping, GONG Guo-fang, et al. Simulation and experimental analyses of synchronization control for shield thrust system[J]. China Mechanical Engineering, 2008, 19(10): 1197-1201.
[[6]]   王欣一. 南昌地铁一号线的地下空间形态研究[D]. 南昌: 南昌大学经济管理学院, 2013: 32-35. WANG Xin-yi. Underground space's exploitation and research[D]. Nanchang: Nanchang University, School of Economics Management, 2013: 32-35.
[[7]]   李小明. 土压平衡盾构掘进引起地面沉降研究: 以南昌地铁为例[D]. 南京: 南京大学地球科学与工程学院, 2014: 13-16. LI Xiao-ming. Study on ground subsidence induced by earth pressure balanced shield tunneling: a Nanchang subway respective[D]. Nanjing: Nanjing University, School of Earth Sciences and Engineering, 2014: 13-16.
[[8]]   白廷辉, 刘树佳, 廖少明, 等. 软土地区盾构掘进速度对地层扰动现场试验研究[J]. 岩土力学, 2016, 37(7): 2040-2045. BAI Ting-hui, LIU Shu-jia, LIAO Shao-ming, et al. Experimental study of disturbance caused by the advancing speed of shield tunneling in soft soil[J]. Rock and Soil Mechanics, 2016, 37(7): 2040-2045.
[[9]]   刘峰, 龚国芳, 石元奇, 等. 基于自适应控制技术的盾构掘进监控系统[J].工程设计学报, 2010, 17(4): 302-306. LIU Feng, GONG Guo-fang, SHI Yuan-qi, et al. Monitoring system of shield tunneling machine based on adaptive control technology[J].Chinese Journal of Engineering Design, 2010, 17(4): 302-306.
[[10]]   YANG Hua-yong, SHI Hu, GONG Guo-fang, et al. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18(7): 950-956.
[[11]]   刘国斌, 龚国芳, 朱北斗, 等. 基于BP神经网络的盾构推进速度自适应PID控制[J]. 工程设计学报, 2010, 17(6): 454-458. LIU Guo-bin, GONG Guo-fang, ZHU Bei-dou, et al. Adaptive PID control of thrust speed of the shield based on BP networks[J]. Chinese Journal of Engineering Design, 2010, 17(6): 454-458.
[[12]]   DUAN X M, XIE H B, LIU Z B, et al. Precise control of thrust force on the shield tunneling machine[J]. Applied Mechanics & Materials, 2011(48/49): 834-839.
[[13]]   王昕, 赵丁选, 尚涛, 等. 基于单神经元的液压挖机自适应PID节能控制[J]. 吉林大学学报(工学版), 2005, 35(4): 377-380. WANG Xin, ZHAO Ding-xuan, SHANG Tao, et al. Adaptive PID control for energy-saving of hydraulic excavator based on single neuron[J].Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 377-380.
[[14]]   严骏, 黎波, 郭刚, 等. 基于单神经元PID的挖掘机铲斗位姿自适应控制[J]. 解放军理工大学学报(自然科版), 2012, 13(3): 316-319. YAN Jun, LI Bo, GUO Gang, et al. Adaptive control for bucket position of excavator based on single neuron PID[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(3): 316- 319.
[[15]]   王秀君, 胡协和. 一种改进的单神经元PID控制策略[J]. 浙江大学学报(工学版), 2011, 45(8): 1498-1501. WANG Xiu-jun, HU Xie-he. An improved control strategy of single neuron PID[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(8): 1499-1501.
[[16]]   LYNN A, SMID E. Modeling hydraulic regenerative hybrid vehicles using AMESim and MATLAB Simulink[J]. Proceedings of Spie the International Society for Optical Engineering, 2005(5805): 24-40.
[1] Jun GUAN,Yihua DING,Qingtao GE,Shuai ZHAO,Yang LU,Jie ZHANG. Rapid manufacturing of RFID antennas based on multi-material 3D printing technology[J]. Chinese Journal of Engineering Design, 2023, 30(3): 288-296.
[2] Yi-nan CHEN,Zhi-xin PU,Zhen-ni ZHENG. A novel vascular interventional surgery robot with force detection mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(1): 20-31.
[3] Ming-yan REN,Xu TAN,Ting ZENG,Rong WANG,Hai-yue LI. Six-point leveling algorithm and synchronous control method for horizontal rotating equipment of space station cabin[J]. Chinese Journal of Engineering Design, 2022, 29(6): 676-683.
[4] Jing ZHOU,Hong-fei GAO,Lin LU,Guo-lin DUAN. Research on extrusion force of micro-flow extrusion 3D printer controlled by variable universe fuzzy PID[J]. Chinese Journal of Engineering Design, 2022, 29(5): 572-578.
[5] WANG Chun-xiang, JI Kang-hui, WANG Yao, LIU Liu. Review of research on segmentation algorithm in rapid prototyping technology[J]. Chinese Journal of Engineering Design, 2021, 28(4): 399-406.
[6] ZHANG Pu, WANG Jun-feng, GAO Yi-cong, ZHANG Xue-jian. Innovative design of box elevator epidemic prevention function integrating AD and TRIZ[J]. Chinese Journal of Engineering Design, 2021, 28(3): 305-311.
[7] WANG Chao, SUN Wen-xu, MA Xiao-jing, CHEN Ji-yang, LUAN Yi-zhong, MA Si-le. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6): 765-770.
[8] ZHENG Hua-lin, YANG Shun-bo, PAN Sheng-hu, WANG Chao. Research on control system of fixed length cutting and automatic layout for flap discs[J]. Chinese Journal of Engineering Design, 2019, 26(4): 461-468.
[9] CHEN Jing, HOU Wei, ZHOU Yi-bo, WANG Xiu-zhuan, CHU Song-lin. Rapid research and development of complex components in aero-engine enabled by additive manufacturing[J]. Chinese Journal of Engineering Design, 2019, 26(2): 123-132.
[10] WANG Li, ZHANG Shi-bing. Research on temperature control system of hot melt glue machine based on CPSO-BP neural network-PID[J]. Chinese Journal of Engineering Design, 2017, 24(5): 588-594.
[11] PAN Chun-rong, XU Hua. Design of X-type unmanned quadrotor based on STM32[J]. Chinese Journal of Engineering Design, 2017, 24(2): 196-202,210.
[12] SI Guo-bin, WANG Chun-xia, JIN Xiao-feng. Research for high-precision feed system based on 3D printer of FDM[J]. Chinese Journal of Engineering Design, 2016, 23(5): 497-500,512.
[13] WANG Ai-guo, CHEN Jian-wei. Simulation for control system of 3-RPS parallel mechanism based on MATLAB[J]. Chinese Journal of Engineering Design, 2016, 23(2): 172-180.
[14] YANG Qian-ming, KONG Ling-qi, LI Jian, WANG Shi-gang, GUO Jian-wei. Modeling and simulation of synchronous speed control system about electric-hydraulic proportional motor[J]. Chinese Journal of Engineering Design, 2015, 22(4): 330-336.
[15] XIE Miao, LIU Zhi-xiang, MAO Jun. Multi-cylinder synchronous control method for advanced support of roadway support equipment[J]. Chinese Journal of Engineering Design, 2015, 22(2): 193-200.