Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (3): 288-296    DOI: 10.3785/j.issn.1006-754X.2023.00.041
Theory and Method of Mechanical Design     
Rapid manufacturing of RFID antennas based on multi-material 3D printing technology
Jun GUAN1(),Yihua DING1,Qingtao GE1,Shuai ZHAO1,Yang LU1,Jie ZHANG1,2()
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Jiangsu Province Key Laboratory of Advanced Food Technology and Equipment, Wuxi 214122, China
Download: HTML     PDF(3953KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to protect the RFID (radio frequency identification) antenna from oxidation and corrosion due to contact with the external environment, and to improve the anti-counterfeiting, integrity and aesthetics of the product, it is necessary to place the RFID antenna on the surface of the product structure or inside the product. In order to rapidly manufacture these products, a multi-material 3D printer integrating fused deposition modeling (FDM) and direct ink writing (DIW) 3D printing technologies was built, with a printable area of 220 mm×190 mm. The influence of antenna structure and substrate structure on the radiation performance of RFID antennas was analyzed by ANSYS HFSS simulation software. Then, four types of RFID antennas were selected as 3D printing objects, and conductive silver paste and polylactic acid (PLA) were used as printing materials for the antenna and substrate, respectively. The measured and simulated curves of the return loss of the antenna print were compared. The results showed that the resonant frequencies of the four types of RFID antennas had shifted approximately 185 MHz in the low-frequency direction relative to their design frequency of 915 MHz. Based on the measurement results of the return loss of antenna prints, the antenna model was further optimized and an embedded RFID antenna with a substrate thickness of 3 mm and an antenna arm length of 55 mm was printed, which met the design requirements of resonant frequency of 915 MHz and bandwidth greater than 150 MHz at ?10 dB. The research results verify the feasibility of integrated printing of RFID antennas and product bodies by using multi-material 3D printing technology and provide a reference for the rapid manufacturing of RFID antennas. This process has broad application prospects.



Key wordsmulti-material      radio frequency identification antenna      fused deposition modeling      direct ink writing      rapid manufacturing     
Received: 29 November 2022      Published: 06 July 2023
CLC:  TH 122  
Corresponding Authors: Jie ZHANG     E-mail: 804768109@qq.com;jiezhang@jiangnan.edu.cn
Cite this article:

Jun GUAN,Yihua DING,Qingtao GE,Shuai ZHAO,Yang LU,Jie ZHANG. Rapid manufacturing of RFID antennas based on multi-material 3D printing technology. Chin J Eng Design, 2023, 30(3): 288-296.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.041     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I3/288


基于多材料3D打印技术的RFID天线快速制造

为了保护RFID(radio frequency identification,射频识别)天线,避免其接触外部环境而氧化、腐蚀,以及为了提高产品的防伪性、一体性与美观性,需要将RFID天线放置在产品结构表面或产品内部。为了快速制造这类产品,搭建了一台集成熔融沉积成形(fused deposition modeling, FDM)和直写成形(direct ink writing, DIW)这2种3D打印技术的多材料3D打印机,其可打印面积为220 mm×190 mm。通过ANSYS HFSS仿真软件分析了天线结构与基板结构对RFID天线辐射性能的影响;然后,选取4种RFID天线作为3D打印对象,使用导电银浆和聚乳酸(polylactic acid, PLA)分别作为天线和基板的打印材料,并对天线打印件回波损耗的实测曲线与仿真曲线进行比较。结果显示,4种RFID天线的谐振频率相对于其设计频率915 MHz均向低频方向发生了约185 MHz的偏移。根据天线打印件回波损耗的测量结果,进一步优化天线模型,并打印了一款基板厚度为3 mm、天线臂长为55 mm的内嵌式RFID天线,其满足谐振频率为915 MHz且-10 dB下带宽大于150 MHz的设计要求。研究结果验证了利用多材料3D打印技术一体化打印RFID天线及产品本体的可行性,为RFID天线的快速制造提供了参考,该工艺具有广阔的应用前景。


关键词: 多材料,  射频识别天线,  熔融沉积成形,  直写成形,  快速制造 
Fig.1 RFID antenna integrated printing scheme
Fig.2 Multi-material 3D printer frame structure
Fig.3 FDM printing nozzle
Fig.4 DIW printing nozzle
Fig.5 MKS Monster8 control board and its circuit connection
参数FDM打印喷头DIW打印喷头
步进电机驱动器细分数1616
每圈所需脉冲数/个200200
齿轮齿数比5∶11∶1
转动距离/mm23.562
喷嘴直径/mm0.40.8
丝材(料筒)直径/mm1.754.7
Table 1 Parameter settings for printing nozzles
Fig.6 Parameter setting program for DIW printing nozzle in Klipper firmware
Fig.7 Multi-material 3D printer physical object and its printing accuracy test results
Fig.8 Two RFID antenna models
Fig.9 Influence of substrate thickness and antenna arm length on resonant frequency of RFID antennas
Fig.10 Comparison of return loss simulation curves of four types of RFID antennas
Fig.11 RFID antenna printing process
Fig.12 Four types of RFID antenna prints and X-ray transmission photos of some antennas
Fig.13 Measurement fixture and measurement site for RFID antenna
天线f0/MHzB/MHzBf0/%G/dBρ
天线1739.93144.6519.55-16.121.331
天线2736.46163.5822.21-18.761.323
天线3750.35134.6617.95-18.791.064
天线4740.96147.7519.94-29.661.025
Table 2 Radiation performance parameter measurement results of four types of RFID antennas
Fig.14 Comparison of measured and simulated curves of return loss of four types of RFID antennas
Fig.15 Optimized RFID antenna print and its return loss measurement curve
[1]   MACDONALD E, WICKER R. Multiprocess 3D printing for increasing component functionality[J]. Science, 2016, 353(6307): aaf2093.
[2]   RAFIEE M, FARAHANI R D, THERRIAULT D. Multi-material 3D and 4D printing: a survey[J]. Advanced Science, 2020, 7(12): 1902307.
[3]   杨兆哲,孔振武,吴国民,等.3D打印聚合物纳米复合材料的研究进展[J].材料导报,2021,35(13):13177-13185. doi:10.11896/cldb.19120105
YANG Z Z, KONG Z W, WU G M, et al. Recent advances in 3D printed polymer nanocomposites[J]. Materials Reports, 2021, 35(13): 13177-13185.
doi: 10.11896/cldb.19120105
[4]   DUAN B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering[J]. Annals of Biomedical Engineering, 2017, 45(1): 195-209.
[5]   陈亚玲,何业军.3D金属打印天线技术研究综述[J].电波科学学报,2018,33(3):266-278. doi:10.13443/j.cjors.2018043003
CHEN Y L, HE Y J. Review of 3D metal printed antenna technologies[J]. Chinese Journal of Radio Science, 2018, 33(3): 266-278.
doi: 10.13443/j.cjors.2018043003
[6]   HELENA D, RAMOS A, VARUM T, et al. Antenna design using modern additive manufacturing technology: a review[J]. IEEE Access, 2020, 8: 177064-177083.
[7]   殷戎飞,徐海黎,田为广,等.框架式3D建筑打印机控制系统设计[J].工程设计学报,2022,29(1):107-114.doi:10.3785/j.issn.1006-754X.2022.00.015
YIN R F, XU H L, TIAN W G, et al. Design of control system for frame 3D construction printer[J]. Chinese Journal of Engineering Design, 2022, 29(1): 107-114.
doi: 10.3785/j.issn.1006-754X.2022.00.015
[8]   ROACH D J, HAMEL C M, DUNN C K, et al. The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures[J]. Additive Manufacturing, 2019, 29: 100819.
[9]   施建平,杨继全,王兴松.多材料零件3D打印技术现状及趋势[J].机械制造与自动化,2016,45(6):1-5,10. doi:10.3969/j.issn.1671-5276.2016.06.001
SHI J P, YANG J Q, WANG X S. Status and trend of 3D printing technology for heterogeneous objects[J]. Machine Building & Automation, 2016, 45(6): 1-5, 10.
doi: 10.3969/j.issn.1671-5276.2016.06.001
[10]   FALLAHPOUR M, ZOUGHI R. Antenna miniaturization techniques: a review of topology-and material-based methods[J]. IEEE Antennas and Propagation Magazine, 2018, 60(1): 38-50.
[11]   ELBOUSHI A, TELBA A, SEBAK A, et al. Electromagnetic soil characterization for undergrounded RFID system implementation[J]. Electronics, 2020, 9(1): 106.
[12]   姜宇琛.基于3D打印技术的柔性可穿戴介质埋藏天线的研究[D].天津:天津工业大学,2019:1-5.
JIANG Y C. Research on flexible wearable dielectric embedding antenna based on 3D printing technology[D]. Tianjin: Tiangong University, 2019: 1-5.
[13]   ZHANG P F, WANG Z X, LI J R, et al. From materials to devices using fused deposition modeling: a state-of-art review[J]. Nanotechnology Reviews, 2020, 9(1): 1594-1609.
[14]   杨钦杰,李佳汶,李明,等.熔融沉积3D打印设备研究进展[J].中国塑料,2022,36(2):157-171. doi:10.19491/j.issn.1001-9278.2022.02.022
YANG Q J, LI J W, LI M, et al. Research progress in fused deposition modeling 3D printing equipment[J]. China Plastics, 2022, 36(2): 157-171.
doi: 10.19491/j.issn.1001-9278.2022.02.022
[15]   RIZWAN M, KHAN M W A, HE H, et al. Flexible and stretchable 3D printed passive UHF RFID tag[J]. Electronics Letters, 2017, 53(15): 1054-1056.
[16]   RAMIREZ R A, ROJAS-NASTRUCCI E A, WELLER T M. UHF RFID tags for on-/off-metal applications fabricated using additive manufacturing[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1635-1638.
[17]   DEL-MAZO-BARBARA L, GINEBRA M. Rheological characterisation of ceramic inks for 3D direct ink writing: a review[J]. Journal of the European Ceramic Society, 2021, 41(16): 18-33.
[18]   张晓琴,秦世煜,姬忠莹,等.3D直书写打印聚合物及其复合材料[J].聊城大学学报(自然科学版),2020,33(3):41-50,56.
ZHANG X Q, QIN S Y, JI Z Y, et al. 3D direct ink writing of polymers and their composites[J]. Journal of Liaocheng University(Natural Science Edition), 2020, 33(3): 41-50, 56.
[19]   刘智,赵永强.3D打印技术设备的现状与发展[J].锻压装备与制造技术,2020,55(6):7-13.
LIU Z, ZHAO Y Q. The current situation and development of 3D printing technology equipment[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(6): 7-13.
[1] NIE Ming-zheng, FAN Qin, WANG Xiong, LI Zhi-cun. Study on the effect of heating baseplate style on warpage deformation in FDM technology[J]. Chin J Eng Design, 2018, 25(4): 420-425,440.