Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (1): 20-31    DOI: 10.3785/j.issn.1006-754X.2023.00.016
Innovative Design     
A novel vascular interventional surgery robot with force detection mechanism
Yi-nan CHEN(),Zhi-xin PU(),Zhen-ni ZHENG
College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
Download: HTML     PDF(6561KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to provide high-precision force feedback to doctors in robot-assisted remote interventional surgery, a novel vascular interventional surgery robot with force detection mechanism is designed. It is a master-slave control system, including a convenient master device and a slave device for delivering guide wire/catheter. Firstly, the force detection mechanism of the vascular interventional surgery robot was designed to realize the accurate measurement of axial proximal force and the perception of radial clamping force. Then, based on the dynamics analysis of the vascular interventional surgery robot, a fuzzy PID (proportional integral derivative) controller with online parameter setting function was designed to improve the delivery accuracy and anti-interference ability of the slave device. At the same time, the step signal was selected to verify the fuzzy PID controller. Finally, the physical prototype of vascular interventional surgery robot was built, and the master-slave motion tracking experiment and the detection and evaluation experiment of axial proximal force and radial clamping force were carried out. The experimental results showed that the vascular interventional surgery robot had a motion tracking error of [?0.31, 0.25] mm, could detect the axial proximal force with an average error of 0.12 N, and could sense the radial clamping force of 0.47-4 N. The research results verified the robustness of the designed vascular interventional surgery robot and the feasibility of its force detection mechanism, which can provide a reference for the design and improvement of similar products.



Key wordsvascular interventional surgery robot      fuzzy PID controller      motion tracking      force detection     
Received: 04 May 2022      Published: 06 March 2023
CLC:  TP 242.3  
Corresponding Authors: Zhi-xin PU     E-mail: 986395488@qq.com;puzhixin@126.com
Cite this article:

Yi-nan CHEN,Zhi-xin PU,Zhen-ni ZHENG. A novel vascular interventional surgery robot with force detection mechanism. Chin J Eng Design, 2023, 30(1): 20-31.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.016     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I1/20


一种具有力检测机制的新型血管介入手术机器人

为了在机器人辅助远程介入手术中实现向医生提供高精度的力反馈,设计了一种具有力检测机制的新型血管介入手术机器人,其是一个主从控制系统,包括一个操作方便的主端装置和一个递送导丝/导管的从端装置。首先,设计了血管介入手术机器人的力检测机制,以实现轴向近端力的精准测量和径向夹紧力的感知。然后,基于血管介入手术机器人的动力学分析,设计了具有在线整定参数功能的模糊PID(proportional integral derivative,比例积分微分)控制器,以提高从端装置的递送精度和抗干扰能力,同时选择阶跃信号对所设计的模糊PID控制器进行仿真验证。最后,搭建血管介入手术机器人物理样机,并开展主从运动跟踪实验和轴向近端力、径向夹紧力检测评估实验。实验结果表明,该血管介入手术机器人具有[-0.31, 0.25] mm的运动跟踪误差,可检测平均误差为0.12 N的轴向近端力以及可感知0.47~4 N的径向夹紧力。研究结果验证了所设计血管介入手术机器人的鲁棒性以及其力检测机制的可行性,可为同类产品的设计和改进提供参考依据。


关键词: 血管介入手术机器人,  模糊PID控制器,  运动跟踪,  力检测 
Fig.1 Principle of vascular interventional surgery robot system
Fig.2 Structure diagram of master device
Fig.3 Structure diagram of slave device
Fig.4 Structure diagram of clamping device
Fig.5 Detection principle of axial proximal force
Fig.6 Detection process of axial proximal force
Fig.7 Detection principle of radial clamping force
Fig.8 Detection process of radial clamping force
Fig.9 Dynamics model of axial translation of slave device
参数数值
J/(kg?m2)0.92×10-6
J/(kg?m2)1.1×10-6
p/mm6
ms/kg0.808
η10.9
B0.245×10-6
μv0.2
μc0.1
Table 1 Dynamics parameters of axial translation of slave device
Fig.10 Dynamics model of radial rotation of slave device
参数数值
J/(kg?m2)0.92×10-6
J1/(kg?m2)0.217×10-6
J2/(kg?m2)0.451×10-6
J3/(kg?m2)0.819×10-6
J/(kg?m2)1.096×10-6
J/(kg?m2)4.047×10-5
B0.245×10-6
i10.8
i20.893
Table 2 Dynamics parameters of radial rotation of slave device
Fig.11 Block diagram of conventional PID controller
Fig.12 Block diagram of fuzzy PID controller
Fig.13 Block diagram of fuzzy control structure
eec
NBNMNSZEPSPMPB
NBPB/NB/PSPB/NB/NSPM/NM/NBPM/NM/NBPS/NS/NMZE/ZE/NMZE/ZE/PS
NMPB/NB/PSPB/NB/NSPM/NM/NBPM/NS/NMPS/NS/NSZE/ZE/NSNS/ZE/ZE
NSPM/NB/ZEPM/NM/NSPM/NS/NMPS/NS/NMZE/ZE/NSNS/PS/NSNS/PS/ZE
ZEPM/NM/ZEPM/NM/NSPS/NS/NSZE/ZE/NSNS/PS/NSNM/PM/NSNM/PM/ZE
PSPS/NM/ZEPS/NS/ZEZE/ZE/ZENS/PS/ZENS/PS/ZENM/PM/ZENM/PB/NS
PMPS/ZE/PBZE/ZE/PSNS/PS/PMNM/PS/PSNM/PM/PSNM/PB/PSNB/PB/PB
PBZE/ZE/PBZE/ZE/PMNM/PS/PMNM/PM/PMNM/PS/PSNB/PB/PSNB/PB/PB
Table 3 Fuzzy control rules for output variables ΔKP , ΔKI and ΔKD
Fig.14 Fuzzy control surfaces for output variables ∆KP , ∆KI and ∆KD
Fig.15 Fuzzy PID controller in MATLAB/Simulink environment
Fig.16 Response curves of step signal under different control modes
Fig.17 Master-slave motion tracking experimental device
Fig.18 Experimental results of master-slave motion tracking
Fig.19 Experimental device for detection and evaluation of axial proximal force
Fig.20 Static calibration experiment results
Fig.21 Dynamic calibration experiment results
Fig.22 Experimental device for detection and evaluation of radial clamping force
Fig.23 Experiment result of radial clamping force detection and evaluation
[1]   KAZANZIDES P, FICHTINGER G, HAGER G, et al. Surgical and interventional robotics: core concepts, technology, and design[J]. IEEE Robotics & Automation Magazine, 2008, 15(2): 122-130.
[2]   NETO F A B, ALVES A F F, MASCARENHAS Y M, et al. Occupational radiation exposure in vascular interventional radiology: a complete evaluation of different body regions[J]. Physica Medica, 2016, 32(8): 1019-1024.
[3]   ANDREASSI M G, PICCALUGA E, GUAGLIUMI G, et al. Occupational health risks in cardiac catheterization laboratory workers[J]. Circulation Cardiovascular Interventions, 2016, 9(4): 132-134.
[4]   EPSTEIN S, SPARER E H, TRAN B N, et al. Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis[J]. JAMA Surgery, 2018, 153(2): e174947.
[5]   HEDYEH R T, PAYNE C J, YANG G Z. Current and emerging robot-assisted endovascular catheterization technologies: a review[J]. Annals of Biomedical Engineering, 2014, 42(4): 697-715.
[6]   TANIMOTO M, ARAI F, FUKUDA T, et al. Telesurgery system for intravascular neurosurgery[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin: Springer, 2000: 29-39.
[7]   GHAMRAOUI A K, RICOTTA J J. Current and future perspectives in robotic endovascular surgery[J]. Current Surgery Reports, 2018, 6: 21.
[8]   KHAN E M, FRUMKIN W, ANDRE N G, et al. First experience with a novel robotic remote catheter system: Amigo™ mapping trial[J]. Journal of Interventional Cardiac Electrophysiology, 2013, 37(2): 121-129.
[9]   MANGELS D R, GIRI J, HIRSHFELD J, et al. Robotic-assisted percutaneous coronary intervention[J]. Catheterization and Cardiovascular Interventions, 2017, 90(6): 948-955.
[10]   ARAI F, FUJIMURA R, FUKUDA T, et al. New catheter driving method using linear stepping mechanism for intravascular neurosurgery[C]// Proceeding of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, May 11-15, 2002.
[11]   LAURA Cercenelli, EMANUELA Marcelli, GIANNI Plicchi, et al. Initial experience with a telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters[J]. ASAIO Journal, 2007, 53(5): 523-529.
[12]   THAKUR Y, BAX J, HOLDSWORTH D W, et al. Design and performance evaluation of a remote catheter navigation system[J]. IEEE Transaction on Biomedical Engineering, 2009, 56(7): 1901-1908.
[13]   SRIMATHVEERAVALLI G, KESAVADAS T, LI X Y. Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(2): 160-170.
[14]   GUO Jian, GUO Shu-xiang, XIAO Nan, et al. A novel robotic catheter system with force and visual feedback for vascular interventional surgery[J]. International Journal of Mechatronics and Automation, 2012, 2(1): 15-24.
[15]   PATEL T M, SHAH S C, PANCHOLY S B. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience[J]. eClinicalMedicine, 2019, 14: 53-58.
[16]   LEMOS P A, FRANKEN M, MARIANI J, et al. Robotic-assisted intervention strategy to minimize air exposure during the procedure: a case report of myocardial infarction and COVID-19[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(5): 1345-1351.
[17]   FU Yi-li, LIU Hao, WANG Shu-guo, et al. Skeleton-based active catheter navigation[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2009, 5(2): 125-135.
[18]   FU Yi-li, GAO An-zhu, LIU Hao, et al. Development of a novel robotic catheter system for endovascular minimally invasive surgery[C]//The 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, May 22-25, 2011.
[19]   JI Cheng, HOU Zeng-guang, XIE Xiao-liang. An image-based guidewire navigation method for robot-assisted intravascular interventions[C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Aug. 30-Sep. 3, 2011.
[20]   LIU Da, LIU Deng-ling. Accuracy experimental study of the vascular interventional surgical robot propulsive mechanism[C]//The 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, May 22-25, 2011.
[21]   BIAN Gui-bin, XIE Xiao-liang, FENG Zhen-qiu, et al. An enhanced dual-finger robotic Hand for Catheter manipulating in vascular intervention: a preliminary study[C]//2013 IEEE International Conference on Information and Automation (ICIA), Yinchuan, Aug. 26-28, 2013.
[22]   PENG Wei-li, XIAO Nan, GUO Shu-xiang, et al. A novel force feedback interventional surgery robotic system[C]//2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, Aug. 2-5, 2015.
[23]   WANG Kun-dong, LU Qing-sheng, CHEN Bin, et al. Endovascular intervention robot with multi-manipulators for surgical procedures: dexterity, adaptability, and practicability[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 75-84.
[24]   GUO Jian, JIN Xiao-liang, GUO Shu-xiang, et al. A vascular interventional surgical robotic system based on force-visual feedback[J]. IEEE Sensors Journal, 2019, 19(23): 11081-11089.
[25]   WANG Hong-bo, CHANG Jing-yuan, YU Hao-yang, et al. Research on a novel vascular interventional surgery robot and control method based on precise delivery[J]. IEEE Access, 2021, 9: 26568-26582.
[26]   GUO Jian, JIN Xiao-liang, GUO Shu-xiang, et al. Study on the tracking performance of the vascular interventional surgical robotic system based on the fuzzy-PID controller[C]//2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Aug. 6-9, 2017.
[27]   GUO Shu-xiang, GUO Yang-ming, BAO Xian-qiang, et al. A PID-type fuzzy logic controller for an interventional surgical robot[C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, Aug. 4-7, 2019.
[28]   姜明明.微创血管介入手术机器人系统远端主从控制研究[D].沈阳:沈阳工业大学,2014:26-27.
JIANG Ming-ming. Research on remote master-slave control of minimally invasive vascular interventional surgery robot system[D]. Shenyang: Shenyang University of Technology, 2014: 26-27.
[29]   彭维礼.心脑血管主从介入手术机器人系统的从端力反馈控制研究[D].北京:北京理工大学,2016:35-37.
PENG Wei-li. Research on slave-end force feedback control of cardiovascular and cerebrovascular master-slave interventional robotic system[D]. Beijing: Beijing Institute of Technology, 2016: 35-37.
No related articles found!