Please wait a minute...
Chinese Journal of Engineering Design  2017, Vol. 24 Issue (3): 317-322    DOI: 10.3785/j.issn.1006-754X.2017.03.011
    
Vibration response analysis of TBM cutterhead system under multi-point distributed loads
LING Jing-xiu1, SUN Wei2, YANG Xiao-jing1, TONG Xin1
1. Key Laboratory of Digital Equipment of Fujian Province, Fujian University of Technology, Fuzhou 350118, China;
2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(2448KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Cutterhead system is the core component of TBM (tunnel boring machine) equipment, which works in extremely poor conditions. Due to the excessive vibration, the abnormal failure of key components will occur and it can influence the whole machine efficiency. Hence, it is necessary to study the dynamic characteristics of the TBM cutterhead system and analyze the influence of different parameters on vibration response, which can provide a theoretical basis for the system design and parameter matching. Based on the dynamics model of TBM cutterhead system, a TBM cutterhead system of a diversion project was taken as an application instance, the parameter influence laws of cutterhead vibration response under spatial multi-point distributed loads were analyzed. The results showed that the cutterhead vibration was the smallest when the mass ratio of cutterhead piece was controlled in the range of 13%-14%. Moreover, the cutterhead radial and torsional vibration fluctuations were relatively obvious when the rotate speed was higher than 2 r/min, and a series of peak mutation speed points were obtained. Furthermore, when the driving pinions were arranged in a uniform distribution, the cutterhead radial vibration was the smallest, and the vibration amplitude was smaller nearly 30% than that of the non-uniform arrangement. The analysis results can guide the structural design of cutterhead and system parameters matching.



Key wordsTBM      multi-point distributed loads      cutterhead system      vibration response      parameter influence     
Received: 28 October 2016      Published: 28 June 2017
CLC:  TH113.1  
Cite this article:

LING Jing-xiu, SUN Wei, YANG Xiao-jing, TONG Xin. Vibration response analysis of TBM cutterhead system under multi-point distributed loads. Chinese Journal of Engineering Design, 2017, 24(3): 317-322.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2017.03.011     OR     https://www.zjujournals.com/gcsjxb/Y2017/V24/I3/317


多点分布载荷下TBM刀盘系统振动响应分析

刀盘系统是全断面隧道掘进机(tunnel boring machine,TBM)装备的核心部件,其工作环境极端恶劣,系统振动剧烈,导致关键构件发生异常失效,影响整机掘进效率。为此,有必要研究TBM刀盘系统的动态特性,分析不同参数对结构振动响应的影响,为系统设计及参数匹配提供理论基础。基于已有的TBM刀盘系统动力学模型,以某供水工程TBM刀盘系统为研究对象,对空间多点分布载荷下刀盘振动响应的参数影响规律进行了分析。研究结果表明,刀盘的分体质量比例控制在13%~14%时,刀盘轴向振动最小;刀盘转速高于2 r/min时,其径向及扭转振动波动较明显,且得到了一系列峰值突变的转速点;驱动小齿轮均匀布置时,刀盘径向振动最小,振动幅度比非均匀布置时小近30%。分析结果可为刀盘的结构设计及系统参数匹配提供指导。


关键词: TBM,  多点分布载荷,  刀盘系统,  振动响应,  参数影响 
[[1]]   水利部科技推广中心. 全断面岩石掘进机(TBM)[M]. 北京: 石油工业出版社, 2005: 95-96. Promotion Center for Science & Technology Achievements of Ministry of Water Resources. Full face rock tunnel boring machine (TBM) [M]. Beijing: Petroleum Industry Press, 2005: 95-96.
[[2]]   夏毅敏, 陈卓, 林赉贶, 等. 某供水工程TBM刀盘破岩过程动静态响应特性[J]. 哈尔滨工程大学学报, 2016, 37(5): 1-6. XIA Yi-min, CHEN Zhuo, LIN Lai-kuang, et al. Static and dynamic response characteristics of TBM cutterhead's rock-breaking process: case study of a diversion project[J]. Journal of Harbin Engineering University, 2016, 37(5): 1-6.
[[3]]   林赉贶, 郭金成, 夏毅敏, 等. 全断面岩石掘进机边缘滚刀优化布置研究[J]. 现代隧道技术, 2016, 53(4): 90-96. LIN Lai-kuang, GUO Jin-cheng, XIA Yi-min, et al. Layout optimization of TBM gauge disc cutters [J]. Modern Tunnelling Technology, 2016, 53(4): 90-96.
[[4]]   赵振威, 郑康泰, 李楠, 等. 不同几何结构的TBM刀盘静力学性能对比分析[J]. 隧道建设, 2016, 36(1): 102-107. ZHAO Zhen-wei, ZHENG Kang-tai, LI Nan, et al. Analysis on static mechanical performances of TBM cutterhead with different geometries [J]. Tunnel Construction, 2016, 36(1): 102-107.
[[5]]   李震, 霍军周, 孙伟, 等. 全断面岩石掘进机刀盘结构主参数的优化设计[J]. 机械设计与研究, 2011, 27(1): 83-86, 90. LI Zhen, HUO Jun-zhou, SUN Wei, et al. Cutterhead structure optimal design of the full-face rock tunnel boring machine[J]. Machine Design & Research, 2011, 27(1): 83-86, 90.
[[6]]   HUO Jun-zhou, SUN Wei, CHEN Jing, et al. Disc cutters plane layout design of the full-face rock tunnel boring machine (TBM) based on different layout patterns[J]. Computers & Industrial Engineering, 2011, 61(4): 1209-1225.
[[7]]   韩美东, 蔡宗熙, 曲传咏. 基于动力稳定性的全断面岩石隧道掘进机刀盘临界推进速度研究 [J]. 机械工程学报, 2014, 50(21): 10-16. HAN Mei-dong, CAI Zong-xi, QU Chuan-yong. Study on the critical driving speed of the tunnel boring machine cutterhead based on the dynamic stability[J]. Journal of Mechanical Engineering, 2014, 50(21): 10-16.
[[8]]   韩美东, 曲传咏, 蔡宗熙, 等. 刀盘掘进过程动态仿真[J]. 哈尔滨工程大学学报, 2015, 36(8): 1098-1102. HAN Mei-dong, QU Chuan-yong, CAI Zong-xi, et al. Dynamic numerical simulation of tunneling by the TBM cutter head [J]. Journal of Harbin Engineering University, 2015, 36(8): 1098-1102.
[[9]]   ZHANG Kai, YU Hai-dong, LIU Zhong-po, et al. Dynamic characteristic analysis of TBM tunnelling in mixed-face conditions[J]. Simulation Modelling Practice & Theory, 2010, 18(7): 1019-1031.
[[10]]   LI Xian-hong, YU Hai-bin, YUAN Ming-zhe, et al. Dynamic modeling and analysis of shield TBM cutterhead driving system[J]. Journal of Dynamic Systems Measurement & Control, 2010, 132(4): 1-14.
[[11]]   谢启江. 变约束条件下硬岩掘进机动力学建模及特性研究[D]. 上海: 上海交通大学机械与动力工程学院, 2015: 10-16. XIE Qi-jiang. Research on modeling and dynamic behavior of tunnel boring machines with variable constraints[D].Shanghai: Shanghai Jiaotong University, School of Mechanical Engineering, 2015: 10-16.
[[12]]   SUN Wei, LING Jing-xiu, HUO Junz-hou, et al. Dynamic characteristics study with multidegree-of-freedom coupling in TBM cutterhead system based on complex factors [J]. Mathematical Problems in Engineering, 2013, 2013(3): 657-675.
[[13]]   HUO Jun-zhou, WU Hang-yang, YANG Jing, et al. Multi-directional coupling dynamic characteristics analysis of TBM cutterhead system based on tunnelling field test[J]. Journal of Mechanical Science & Technology, 2015, 29(8): 3043-3058.
[[14]]   霍军周, 欧阳湘宇, 王亚杰, 等. 重载冲击激励下TBM主机系统动力学建模与振动特性分析[J]. 机械科学与技术, 2015, 34(9): 1322-1327. HUO Jun-zhou, OUYANG Xiang-yu, WANG Ya-jie, et al. Modeling and vibration analysis of TBM mainframe under impact heavy loads [J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9): 1322-1327.
[[15]]   YAGIZ S, GOKCEOGLU C, SEZER E, et al. Application of two non-linear prediction tools to the estimation of tunnel boring machine performance [J]. Engineering Applications of Artificial Intelligence, 2009, 22(4/5): 808-814.
[[16]]   YAZDANI-CHAMZINI A, YAKHCHALI S H. Tunnel boring machine (TBM) selection using fuzzy multicriteria decision making methods [J]. Tunnelling and Underground Space Technology, 2012, 30(4): 194-204.
[[17]]   ZARE S, BRULAND A, ROSTAMI J. Evaluating D & B and TBM tunnelling using NTNU prediction models [J]. Tunnelling & Underground Space Technology, 2016(59): 55-64.
[1] MO Li, JIA Du-ping, MAO Liang-jie, WANG Guo-rong. Experimental study on the vibration mechanism of horizontal well completion pipe string under different gas production[J]. Chinese Journal of Engineering Design, 2020, 27(6): 690-697.
[2] WANG Fei, GONG Guo-fang, QIN Yong-feng. Controller design for the hybrid cutterhead driving system of TBMunder limited rotational speed condition[J]. Chinese Journal of Engineering Design, 2019, 26(6): 722-727.
[3] ZHONG Qiang, LUO Zheng-shan. Coupled vibration response of marine riser caused by oil-gas-water three-phase slug flow[J]. Chinese Journal of Engineering Design, 2019, 26(1): 95-101.
[4] HUANG Zhi-qiang, PENG Xun, LI Gang. Study on contact property and energy transfer between vibrator baseplate and ground[J]. Chinese Journal of Engineering Design, 2019, 26(1): 102-109.
[5] SHI Zhuo, GONG Guo-fang, LIU Tong, WU Wei-qiang, PENG Zuo. Design and simulation analysis of gripper and thrust energy-saving system for TBM test rig[J]. Chinese Journal of Engineering Design, 2017, 24(3): 323-329.
[6] LU Feng, ZHANG Chi, SUN Jian, TIAN Jun-xing, LIU Min, WU Yu-hou. Experimental study on rock-breaking simulation of double disc cutter of TBM[J]. Chinese Journal of Engineering Design, 2016, 23(1): 41-48.
[7] LIU Tong, GONG Guo-fang, ZHANG Zhen, PENG Zuo, WU Wei-qiang. Design and simulation analysis of hybrid cutterhead driving system for TBM test bed[J]. Chinese Journal of Engineering Design, 2015, 22(5): 438-444.
[8] ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, WU Wei-qiang, LIU Tong. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(5): 324-329.
[9] YANG Qian-ming, KONG Ling-qi, LI Jian, WANG Shi-gang, GUO Jian-wei. Modeling and simulation of synchronous speed control system about electric hydraulic proportional motor[J]. Chinese Journal of Engineering Design, 2015, 22(5): 330-336.
[10] ZHANG Zhen, GONG Guo-fang, RAO Yun-yi, WU Wei-qiang, LIU Tong. Design and simulation analysis of gripper and thrust hydraulic system for TBM test rig[J]. Chinese Journal of Engineering Design, 2015, 22(4): 324-329.
[11] YANG Zhong-jiong,LU Yao-zhong,ZHOU Li-qiang,LI Hong-bing. Research on the characteristics of the TBM thrust hydraulic system under fundamental vibration[J]. Chinese Journal of Engineering Design, 2015, 22(3): 278-283.
[12] LIU Jie, QING Qi-Xiang, WEN Gui-Lin. Research on vibration response of EPB thrust system[J]. Chinese Journal of Engineering Design, 2013, 20(6): 489-494.