Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (1): 102-109    DOI: 10.3785/j.issn.1006-754X.2019.01.014
    
Study on contact property and energy transfer between vibrator baseplate and ground
HUANG Zhi-qiang, PENG Xun, LI Gang
School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
Download: HTML     PDF(1372KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The surface topography of ground has great influence on the contact properties between the vibrator baseplate and ground. In order to investigate the effects of the ground surface parameters on the contact properties and vibration character of the vibrator baseplate-ground contact system, the three dimensional surface topography of rough ground was generated by the fractal function theory and then the vibrator baseplate-ground contact model was established. The contact curves between vibrator baseplate and ground under different ground surface topography and material parameters were obtained. The dynamics equation of the vibrator baseplate-ground contact model was further established, and the displacement response and energy transfer of the vibrator baseplate were calculated. The results showed that the nonlinearity of the contact force between the vibrator baseplate and the ground increased with the increase of the ground surface roughness. The natural frequency of the vibrator baseplate-ground contact system decreased with the increase of the ground surface roughness, as well as the energy transfer of the baseplate per cycle. Meanwhile, the nonlinearity of the ground material parameters also influenced the vibration response and energy transfer of the vibrator baseplate-ground contact system. Consequently, the ground surface roughness and material nonlinearity were important reasons which restricted the output of the vibroseis in high frequency phase. The study has a positive effect for optimization and high frequency expansion of the vibroseis.



Key wordsvibroseis      rough contact      vibration response      energy transfer     
Received: 09 April 2018      Published: 28 February 2019
CLC:  TH123  
Cite this article:

HUANG Zhi-qiang, PENG Xun, LI Gang. Study on contact property and energy transfer between vibrator baseplate and ground. Chinese Journal of Engineering Design, 2019, 26(1): 102-109.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.01.014     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I1/102


可控震源振动器平板-大地接触性质与能量传递研究

大地的表面形貌是影响可控震源振动器平板与大地之间接触性质的因素之一。为了掌握大地表面参数对可控震源振动器平板-大地接触系统接触性质及振动特性的影响规律,基于分形理论建立了三维粗糙大地表面形貌,构建了振动器平板-大地接触模型,得到了不同大地表面形貌及材料参数下振动器平板与大地之间的接触力-变形曲线;建立了振动器平板-大地接触振动动力学方程,并计算了振动器平板的位移响应以及能量传递。结果表明:振动器平板与大地之间接触力的非线性随大地表面粗糙度的增大而增大,振动器平板-大地接触系统的固有频率随大地表面粗糙度的增大而减小;粗糙表面的接触模型中振动器平板每一周期向大地传递的能量随时间的增大而减小。同时,大地表面材料参数的非线性也会影响平板-大地接触系统的振动响应和能量传递。由此可知,大地表面的粗糙度和材料的非线性是限制可控震源高频输出的重要原因。研究结果将为可控震源的优化和高频拓展提供参考。


关键词: 可控震源,  粗糙接触,  振动响应,  能量传递 

[1] 刘金中,马铁荣.可控震源的发展状况[J].石油科技论坛,2008,27(5):38-42. LIU Jin-zhong, MA Tie-rong. Development of the vibrosies[J]. Oil Forum, 2008, 27(5):38-42.
[2] WEI Z, PHILLIPS T F, HALL M A. Fundamental discussions on seismic vibrators[J]. Geophysics, 2010, 75(6):W13-W25.
[3] 陶知非.改善可控震源高频信号输出品质的探讨[J].物探装备,2008,18(2):71-77. TAO Zhi-fei. Study on improving quality of high-frequency output signal in vibroseis[J]. Equipment for Geophysical Prospecting, 2008, 18(2):71-77.
[4] WEI Z. Modelling and modal analysis of seismic vibrator baseplate[J]. Geophysical Prospecting, 2010, 58(1):19-32.
[5] WEI Z H, PHILLIPS T F. Characterizing the vibrator captured ground mass system using finite element analysis[C]//SEG Technical Program Expanded Abstracts 2013, Tulsa:SEG, 2013:126-130.
[6] HUANG Z, LI G, HAO L. Study on dynamics of vibrator baseplate at low and high frequencies[J]. Journal of Vibroengineering, 2017, 19(4):2413-2426.
[7] LEBEDEV A, BERESNEV I. Nonlinear distortion of signals radiated by vibroseis sources[J]. Geophysics, 2004, 69(4):968-977.
[8] 李振春,曲英铭,韩文功,等.可控震源两种谐波产生机理与特征研究[J].石油物探,2016,55(2):159-172. LI Zhen-chun, QU Ying-ming, HAN Wen-gong, et al. Generation mechanism and characteristics of two kinds of harmonic waves for vibroseis[J]. Geophysical Prospecting for Petroleum, 2016, 55(2):159-172.
[9] 庄娟,林君,吴东江,等.高频可控震源与大地振动耦合过程幅频特性分析[J].长春科技大学学报,1999,29(2):184-187. ZHUANG Juan, LIN Jun, WU Dong-jiang, et al. Analyzing coupling process of the earth-high frequency vibrator[J]. Journal of Changchun University of Science and Technology, 1999, 29(2):184-187.
[10] LIU J, HUANG Z Q, LI G, et al. Dynamic characteristics analysis of a seismic vibrator-ground coupling system[J]. Shock and Vibration, 2017(6):1-12.
[11] 丁雅萍,黄志强,李刚.基于有限元法的KZ-28型振动器平板结构优化与性能研究[J].机械设计与制造,2016(11):205-208. DING Ya-ping, HUANG Zhi-qiang, LI Gang. Research and structural optimization on the performance of flat plate of KZ-28 type vibrator based on finite element method[J]. Machinery Design & Manufacture, 2016(11):205-208.
[12] 侯占峰,薛晶,闫建国,等.土壤地面不平度及接触分形模型[J].中国农机化学报,2015,36(4):279-281. HOU Zhan-feng, XUE Jing, YAN Jian-guo, et al. Soil surface roughness and fractal contact model[J]. Journal of Chinese Agriculture Mechanization, 2015, 36(4):279-281.
[13] 任新成,田炜,刘鹏,等.分形大地土壤表面与部分埋藏目标复合散射特性[J].强激光与粒子束,2017,29(2):40-46. REN Xin-cheng, TIAN Wei, LIU Peng, et al. Fractal soil surface and composite scattering characteristic of buried targets[J]. High Power Laser and Particle Beams, 2017, 29(2):40-46.
[14] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1):1-11.
[15] NOORLANDT R, DRIJKONINGEN G. On the mechanical vibrator-earth contact geometry and its dynamics[J]. Geophysics, 2016, 81(3):37-45.
[16] YAN W, KOMVOPOULO K. Contact analysis of elastic-plastic fractal surfaces[J]. Journal of Applied Physics, 1998, 84(7):3617-3624.
[17] 王满生,周锡元,胡聿贤.桩土动力分析中接触模型的研究[J].岩土工程学报,2005,27(6):616-620. WANG Man-sheng, ZHOU Xi-yuan, HU Yu-xian. Studies on contact model of soil-pile dynamic interaction[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6):616-620.
[18] 袁凡凡,栾茂田,闫澍旺.筏板-桩-土相互作用的三维弹塑性有限元分析[J].岩石力学与工程学报,2005,24(18):3332-3336. YUAN Fan-fan, LUAN Mao-tian, YAN Shu-wang. 3D elastoplastic finite element analysis of bearing capacity behavior of interaction of raft-pile and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18):3332-3336.

[1] CHEN Zhen, LI Tao, XUE Xiao-wei, ZHOU Yang, JING Shuang, CHEN Yan. Fatigue reliability analysis and optimization of vibroseis vibrator baseplate based on fuzzy comprehensive evaluation method[J]. Chinese Journal of Engineering Design, 2021, 28(4): 415-425.
[2] MO Li, JIA Du-ping, MAO Liang-jie, WANG Guo-rong. Experimental study on the vibration mechanism of horizontal well completion pipe string under different gas production[J]. Chinese Journal of Engineering Design, 2020, 27(6): 690-697.
[3] ZHONG Qiang, LUO Zheng-shan. Coupled vibration response of marine riser caused by oil-gas-water three-phase slug flow[J]. Chinese Journal of Engineering Design, 2019, 26(1): 95-101.
[4] HUANG Zhi-qiang, PENG Xun, LI Gang. Analysis of multi-frequency response of vibroseis vibrator baseplate[J]. Chinese Journal of Engineering Design, 2017, 24(6): 648-654.
[5] HUANG Zhi-qiang, ZENG Hong-yang, LI Gang, TAO Zhi-fei, HAO Lei. Study on vibroseis reaction mass-piston rod dynamic behavior law and disturbance control[J]. Chinese Journal of Engineering Design, 2017, 24(4): 403-411.
[6] LING Jing-xiu, SUN Wei, YANG Xiao-jing, TONG Xin. Vibration response analysis of TBM cutterhead system under multi-point distributed loads[J]. Chinese Journal of Engineering Design, 2017, 24(3): 317-322.
[7] LIU Jie, QING Qi-Xiang, WEN Gui-Lin. Research on vibration response of EPB thrust system[J]. Chinese Journal of Engineering Design, 2013, 20(6): 489-494.