Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (6): 684-694    DOI: 10.3785/j.issn.1006-754X.2022.00.085
Innovative Design     
Design and experimental research of pneumatic soft picking manipulator
San-ping LI1(),Teng-jia SUN1,Long-qiang YUAN1,Li-guo WU1,2()
1.School of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
2.Harbin Forestry Machinery Research Institute, State Forestry and Grassland Administration, Harbin 150086, China
Download: HTML     PDF(4505KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the problems of traditional rigid picking manipulators, such as small scope of application, poor environmental adaptability and great damage to fruits and vegetables, a rigid-flexible coupling pneumatic soft picking manipulator for crabapple picking was designed. According to the characteristics and picking requirements of crabapple, the six-finger wrapped picking form was determined. Taking Longfeng fruit as an example, the bending angle calculation model for the soft finger of picking manipulator was established, and the bending angle of single finger was determined; the HY-E620 type silicone was selected as the material of soft fingers through the tensile contrast experiment of three kinds of silicone materials; the ABAQUS finite element simulation analysis of the influence of various structures on the bending performance of soft fingers was carried out, and the optimal structure was determined; the corresponding relationships between the bending angle and the output force of a single soft finger under different driving pressure conditions were measured by experiments, and the three-finger grasping experiment for various fruits under the driving pressure of 0.08 MPa was carried out, which verified the rationality of the soft finger structure. Finally, a six-finger wrapped pneumatic soft picking manipulator was trial-produced, and the picking experiments were carried out on crabapple, apple, pear and orange. The results showed that the designed picking manipulator could not only pick clustering crabapples containing 3?6 fruits with a success rate of 80%, but also pick apples, pears, oranges and other spherical fruits, which had a certain versatility, and could provide a new idea for the design and research of fruit picking manipulator.



Key wordspneumatic soft picking manipulator      crabapple picking      six finger wrapped type      grasping experiment      finite element analysis     
Received: 14 April 2022      Published: 06 January 2023
CLC:  TH 138  
Corresponding Authors: Li-guo WU     E-mail: bluelii73@163.com;wlg0041@163.com
Cite this article:

San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator. Chin J Eng Design, 2022, 29(6): 684-694.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.085     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I6/684


气动软体采摘机械手设计及实验研究

针对传统刚性采摘机械手适用范围小、环境适应性差及对果蔬损伤大等问题,设计了一种面向沙果采摘的刚柔耦合气动软体采摘机械手。根据沙果的结果特点以及采摘要求,确定了六指包裹式采摘形式。以龙丰果为例,建立了采摘机械手软体手指弯曲角度计算模型,确定了单指的弯曲角度;通过3种硅胶材料的拉伸对比实验,选定HY-E620型硅胶作为软体手指的材料;开展了多种结构对软体手指弯曲性能影响的ABAQUS有限元仿真分析,确定了较优的结构;利用实验测定了不同驱动气压条件下单根软体手指弯曲角度与输出力的对应关系,并在0.08 MPa驱动气压下对多种水果进行三指抓取实验,验证了软体手指结构的合理性。最后,试制了六指包裹式气动软体采摘机械手,并分别对沙果、苹果、梨和橘子等进行了采摘实验。结果表明:所设计的采摘机械手不仅对含3~6个果实的成串沙果的采摘成功率达到80%,还可采摘苹果、梨和橘子等类球形水果,具有一定的通用性,可为水果采摘机械手的设计与研究提供新思路。


关键词: 气动软体采摘机械手,  沙果采摘,  六指包裹式,  抓取实验,  有限元分析 
Fig.1 Physical picture of crabapple tree
Fig.2 Structure diagram of pneumatic soft picking manipulator
组别龙丰果数量/个
123456
第1组43.291.991.2115.3106.2118.2
第2组42.047.891.1104.3121.6118.9
第3组41.547.093.2107.586.0124.5
第4组48.191.486.1116.399.792.5
Table 1 Diameter of Longfeng fruit in each group
Fig.3 Calculation model of bending angle of soft finger
Fig.4 Stress‒strain fitting curves of three kinds of silicone
Fig.5 Soft fingers poured by three kinds of silicone
参数数值参数数值
a13a33
b13b39
l1113c312
m117d318
r113e33
r126f36
r139l3113
a23m311
b23r316
c26r329
d212a43
e218b49
f23l4113
g26m411
h29r413
l2113r426
m217r439
Table 2 Structural parameters of strain layer of four kinds of soft fingers
Fig.6 Schematic diagram of strain layer structure of four kinds of soft fingers
Fig.7 Influence of structure on bending performance of soft finger
Fig.8 Influence of airway size on bending performance of soft finger
Fig.9 Influence of airway shape on bending performance of soft finger
Fig.10 Schematic diagram of mold structure of soft ginger
Fig.11 Inflation bending experiment device for soft finger
实验序号驱动气压/MPa
0.0250.050.060.070.080.09
平均值8.719.341.760.068.778.3
第1次82039586678
第2次81845637179
第3次102041596978
Table 3 Measurement results of bending angle of soft fingers
Fig.12 Simulation results of bending form of soft finger
Fig.13 Comparison between simulation and experiment results of bending angle of soft finger
Fig.14 Measuring device for end output force of soft finger

驱动

气压

/MPa

弯曲角度/(°)
10203040506070
0.060.2550.1240.0530000
0.070.7230.4010.0320.1750.02800
0.080.9880.7490.4090.3670.1880.0540
Table 4 Measurement results of end output force of soft finger
抓取对象质量/g
圣女果25
沙糖橘30
鸭梨120
猕猴桃145
橘子115
苹果190
Table 5 Weight table of experimental subjects
Fig.15 Three-finger grasping experiment results
Fig.16 Experimental site of crabapple picking with pneumatic soft picking manipulator
沙果数量/个驱动气压/MPa
0.060.070.08
1043
2056
3488
4598
5879
6887
Table 6 Number of successful picking for crabapple
Fig.17 Experimental site of other fruits picking with pneumatic soft picking manipulator
水果种类驱动气压/MPa
0.060.070.08
橘子989
苹果1098
899
9910
Table 7 Number of successful picking for different fruits
[1]   VAN HENTEN E J, VAN TJIJL B A J, HEMMING J, et al. Field test of an autonomous cucumber picking robot[J]. Biosystems Engineering, 2003, 86(3): 305-313.
[2]   CHO S I, CHANG S J, KIM Y Y, et al. Development of a three degrees of freedom robot for harvesting lettuce using machine vision and fuzzy logic control[J]. Biosystems Engineering, 2002, 82(2): 143-149.
[3]   KIM S, LASCHI C, TRIMMER B. Soft robotics: a bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5): 287-294.
[4]   曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述 [J].机械工程学报,2012,48(3):25-33. doi:10.3901/jme.2012.03.025
CAO Yu-jun, SHANG Jian-zhong, LIANG Ke-shan, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3): 25-33.
doi: 10.3901/jme.2012.03.025
[5]   RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475.
[6]   WANG L, IIDA F. Deformation in soft-matter robotics: a categorization and quantitative characterization[J]. IEEE Robotics & Automation Magazine, 2015, 22(3): 125-139.
[7]   ELANGO N, FAUDZI A. A review article: investigations on soft materials for soft robot manipulations[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5/8): 1027-1037.
[8]   HUGHES J, CULHA U, GIARDINA F, et al. Soft manipulators and grippers: a review[J]. Frontiers in Robotics and AI, 2016, 3: 69.
[9]   BOGUE R. Flexible and soft robotic grippers: the key to new markets?[J]. Industrial Robot, 2016, 43(3): 258-263.
[10]   魏琼,张永梁,游颖,等.基于多腔软体驱动器的柔性手指设计[J].工程设计学报,2020,27(4):425-432,532. doi:10.3785/j.issn.1006-754X.2020.00.057
WEI Qiong, ZHANG Yong-liang, YOU Ying, et al. Flexible finger design based on multi-cavity soft actuator[J]. Chinese Journal of Engineering Design, 2020, 27(4): 425-432, 532.
doi: 10.3785/j.issn.1006-754X.2020.00.057
[11]   MARCHESE A D, TEDRAKE R, RUS D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator[J]. The International Journal of Robotics Research, 2016, 35(8): 1000-1019.
[12]   CHEN Cong, ZOU Jun. Adaptive robust control of soft bending actuators: an empirical nonlinear model-based approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2021, 22(9): 681-694.
[13]   夏俊.柔性气动机械手的设计与控制系统研究[D].哈尔滨:哈尔滨工业大学,2021:25-40.
XIA Jun. Research on design and control system of a flexible pneumatic manipulator[D]. Harbin: Harbin Institute of Technology, 2021: 25-40.
[14]   王田苗,郝雨飞,杨兴帮,等.软体机器人:结构、驱动、传感与控制[J].机械工程学报,2017,53(13):1-13. doi:10.3901/jme.2017.13.001
WANG Tian-miao, HAO Yu-fei, YANG Xing-bang, et al. Soft robots: structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13): 1-13.
doi: 10.3901/jme.2017.13.001
[15]   彭艳,刘勇敢,杨扬,等.软体机械手爪在果蔬采摘中的应用研究进展[J].农业工程学报,2018,34(9):11-20. doi:10.11975/j.issn.1002-6819.2018.09.002
PENG Yan, LIU Yong-gan, YANG Yang, et al. Research progress on application of soft robotic gripper in fruit and vegetable picking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 11-20.
doi: 10.11975/j.issn.1002-6819.2018.09.002
[16]   陈昕,华超,朱银龙,等.水果采摘机器人末端执行器的研究进展[J].林业机械与木工设备,2020,48(9):4-10. doi:10.3969/j.issn.2095-2953.2020.09.001
CHEN Xin, HUA Chao, ZHU Yin-long, et al. Research progress in fruit picking robot end effectors[J]. Forestry Machinery and Woodworking Equipment, 2020, 48(9): 4-10.
doi: 10.3969/j.issn.2095-2953.2020.09.001
[17]   KONDO N, YATA K, LIDA M, et al. Development of an end effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture Environment & Food, 2010, 3(1): 20-24.
[18]   GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
[19]   WANG Z, HIRAI S. Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 624-631.
[20]   李健,戴楚彦,王扬威,等.面向草莓抓取的气动四叶片软体抓手研制[J].哈尔滨工业大学学报,2022,54(1):105-113. doi:10.11918/202103107
LI Jian, DAI Chu-yan, WANG Yang-wei, et al. Development of pneumatic four blade soft grasp for grabbing strawberry[J]. Journal of Harbin Institute of Technology, 2022, 54(1): 105-113.
doi: 10.11918/202103107
[21]   赵云伟,耿德旭,刘晓敏,等.气动柔性果蔬采摘机械手运动学分析与实验[J].农业机械学报,2019,50(8):31-42. doi:10.6041/j.issn.1000-1298.2019.08.004
ZHAO Yun-wei, GENG De-xu, LIU Xiao-min, et al. Kinematics analysis and experiment on pneumatic flexible fruit and vegetable picking manipulator[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(8): 31-42.
doi: 10.6041/j.issn.1000-1298.2019.08.004
[22]   华超,褚凯梅,陈昕,等.软体水果采摘机械手系统设计分析与试验[J].林业工程学报,2021,6(3):127-132.
HUA Chao, CHU Kai-mei, CHEN Xin, et al. Design, analysis and experimental of soft picking manipulator system for fruit harvesting[J]. Journal of Forestry Engineering, 2021, 6(3): 127-132.
[23]   刘刚.北方沙果栽培技术[J].种子科技,2018,36(2):79-82. doi:10.3969/j.issn.1005-2690.2018.02.058
LIU Gang. Cultivation technology of northern sand fruit[J]. Seed Science and Technology, 2018, 36(2): 79-82.
doi: 10.3969/j.issn.1005-2690.2018.02.058
[24]   MOKARRAM H, PAUL S. More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study[J]. Journal of the Mechanical Behavior of Materials, 2013, 22(1/2): 27-50.
[25]   钱胜,陆益民,杨咸启,等.橡胶材料超弹性本构模型选取及参数确定概述[J].橡胶科技,2018,16(5):5-10. doi:10.3969/j.issn.2095-5448.2018.05.001
QIAN Sheng, LU Yi-min, YANG Xian-qi, et al. Overview of selection and parameter determination for hyperelastic constitutive model of rubber material[J]. Rubber Science and Technology, 2018, 16(5): 5-10.
doi: 10.3969/j.issn.2095-5448.2018.05.001
[26]   张晗.气动软体机械手抓取性能研究[D].西安:西安理工大学,2019:30-60. doi:10.33737/gpps19-bj-117
ZHANG Han. Research on grasping performance of pneumatic soft gripper[D]. Xi’an: Xi’an University of Technology, 2019: 30-60.
doi: 10.33737/gpps19-bj-117
[1] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[2] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chin J Eng Design, 2023, 30(4): 467-475.
[3] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[4] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chin J Eng Design, 2022, 29(6): 713-719.
[5] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[6] Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation[J]. Chin J Eng Design, 2022, 29(3): 318-326.
[7] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chin J Eng Design, 2022, 29(2): 161-167.
[8] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chin J Eng Design, 2021, 28(4): 504-510.
[9] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chin J Eng Design, 2021, 28(2): 227-234.
[10] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chin J Eng Design, 2021, 28(1): 95-104.
[11] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chin J Eng Design, 2021, 28(1): 25-32.
[12] ZHOU Chao, WANG Yang, RUI Xiao-ming. Finite element analysis and experimental study on wind-induced swing of 500 kV transmission line jumper wire[J]. Chin J Eng Design, 2020, 27(6): 713-719.
[13] LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank[J]. Chin J Eng Design, 2020, 27(2): 182-190.
[14] LIU Zhao, YOU Hong-xin, SUN Liang, YANG Yu-ling, LIU Hua-qing. Design of suspended hydraulic transmission rotary detection platform for large spherical tank[J]. Chin J Eng Design, 2019, 26(3): 267-273.
[15] SONG Jian-hu. Vibration analysis of a data transmission antenna on high orbit satellite[J]. Chin J Eng Design, 2019, 26(3): 274-279.