Please wait a minute...
Chin J Eng Design  2022, Vol. 29 Issue (3): 318-326    DOI: 10.3785/j.issn.1006-754X.2022.00.035
Optimization Design     
Optimization design of precision machine tool bed considering assembly deformation
Guang-ming SUN(),Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO()
School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China
Download: HTML     PDF(4601KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to reduce the assembly deformation and improve the assembly accuracy of machine tool, an optimization design method of machine tool bed considering assembly deformation was proposed. Firstly, the assembly deformation parts of machine tool and assembly deformation mechanism of the machine tool bed were analyzed, and the factors affecting the assembly deformation of machine tool bed and their influence laws were studied; secondly, based on response surface model and genetic algorithm, a multi-objective optimization method of machine tool bed considering assembly deformation was proposed, and the optimization design process was given; finally, taking the classic machine tool bed as an example, taking the structural parameters of the bed as design variables, and taking the minimum of bed mass, assembly deformation amplitude, maximum static deformation and maximum of first-order natural frequency as the optimization objective, the optimal design of the bed was carried out. The results showed that the number and thickness of stiffener plates along the length and width of the bed had an important influence on the assembly deformation; after optimization, the assembly deformation could be effectively reduced, the assembly accuracy could be improved, and the bed mass smaller, the stiffness was bigger, and the dynamic performance was better. The research results not only provide a reference for the structural analysis and optimization design of foundation large parts of machine tool, but also provide a theoretical basis for the multi-objective optimization of other similar equipment, which has important engineering practice value.



Key wordsprecision machine tool      assembly deformation      optimization design method      finite element analysis     
Received: 09 March 2021      Published: 05 July 2022
CLC:  TH 122  
Corresponding Authors: Jian ZHAO     E-mail: gmsun@tju.edu.cn;zhaojiantcu@163.com
Cite this article:

Guang-ming SUN,Yi-miao WANG,Qian WAN,Kun GONG,Wen-jin WANG,Jian ZHAO. Optimization design of precision machine tool bed considering assembly deformation. Chin J Eng Design, 2022, 29(3): 318-326.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2022.00.035     OR     https://www.zjujournals.com/gcsjxb/Y2022/V29/I3/318


考虑装配变形的精密机床床身优化设计

为了减小装配变形,提高机床装配精度,提出了一种考虑装配变形的机床床身优化设计方法。首先,分析了机床装配变形部位和床身装配变形机理,研究了影响机床床身装配变形的因素及其影响规律;其次,基于响应面模型和遗传算法,提出了考虑装配变形的机床床身多目标优化方法,给出了优化设计流程;最后,以经典的机床床身为实例,以床身结构参数为设计变量,以床身质量、装配变形幅值、最大静变形量最小和一阶固有频率最大为优化目标,对床身进行优化设计。结果表明:床身长度和宽度方向的筋板数量和筋板厚度均对装配变形有重要影响;床身优化后,可有效减小装配变形,提高装配精度,同时使床身的质量更小、刚度更大和动态性能更优。研究结果不但为机床基础大件的结构分析与优化设计提供了参考,也为其他类似设备的多目标优化提供了理论依据,具有重要的工程实践价值。


关键词: 精密机床,  装配变形,  优化设计方法,  有限元分析 
Fig.1 Assembly process of machine tool
Fig.2 Deformed parts of machine tool assembly
Fig.3 Assembly position of guide rail and bed
Fig.4 Finite element model of assembly position of guide rail and bed
Fig.5 Simulation results of assembly deformation of guide rail and bed
Fig.6 Influence of the number of the bed stiffener plat on assembly deformation
Fig.7 Influence of the thickness of the bed stiffener plate on assembly deformation
Fig.8 Guide rail and bed assembly experiment
Fig.9 Experimental results of guide rail and bed assembly
Fig.10 Multi-objective optimization design flow of machine tool bed
Fig.11 Initial model of machine tool bed
水平因素
x1/条x2/mmx3/条x4/mmx5/mm
1220020-90
2325125-60
3430230-30
45353350
564044030
Table 1 Factors and levels of orthogonal test of machine tool bed optimization
编号试验因素试验结果
x1/条x2/mmx3/条x4/ mmx5/mmm/tδmax/μmHad/μmf1/Hz
1220020-901.0695.4319.2485.50
2225125-601.2384.6317.8510.00
3230230-301.4623.5317.8517.00
423533501.7382.5012.7523.36
5240440302.0662.1418.4529.20
632013001.2943.4947.3545.75
7325235301.5572.7916.1559.17
8330340-901.8692.2211.7569.80
9335420-601.6892.2110.4586.85
10340025-301.2983.0113.3544.80
11420240-601.6252.5712.9572.87
12425320-301.5672.3212.7598.97
1343042501.8342.1010.4612.29
14435030301.3562.5116.0537.16
15440135-901.5952.3912.2677.59
16520325301.6492.2117.8599.95
17525430-901.9532.0611.7620.40
18530035-601.3852.3711.9526.67
19535140-301.6622.1611.1694.20
2054022001.8301.9810.1701.32
21620435-302.0482.0813.0615.49
2262504001.3852.2810.3510.78
23630120301.5732.0614.2655.56
24635225-901.8071.949.38715.96
25640330-602.0811.8810.2725.48
Table 2 Result of orthogonal test of machine tool bed optimization
参数FmFδmaxFHadFf1
R20.998 60.998 90.995 80.989 0
Radj20.989 00.991 50.907 60.966 4
Table 3 Fitting accuracy of response surface model
设计变量优化前优化后
x1/条34
x2/mm2530
x3/条21
x4/mm3530
x5/mm-450
Table 4 Design variables of machine tool bed before and after optimization
Fig.12 Comparison of finite element simulation analysis results of machine tool bed before and after optimization
参数原始值优化值变化率/%
m/t1.561.16-25.64
δmax/μm17.210.6-38.37
Had/μm0.030 20.025 7-14.90
f1/Hz559.12662.7818.54
Table 5 Comparison of dynamic and static characteristic parameters of machine tool bed before and after optimization
[1]   WANG Y, ZHAI W J, YANG L P, et al. Study on the tolerance allocation optimization by fuzzy-set weight-center evaluation method[J]. International Journal of Advanced Manufacturing Technology, 2007, 33(3/4): 317-322. doi:10.1007/s00170-006-0471-0
doi: 10.1007/s00170-006-0471-0
[2]   ANDOLFATTO L, THIÉBAUT F, LARTIGUE C, et al. Quality- and cost-driven assembly technique selection and geometrical tolerance allocation for mechanical structure assembly[J]. Journal of Manufacturing Systems, 2014, 33(1): 103-115. doi:10.1016/j.jmsy.2013.03.003
doi: 10.1016/j.jmsy.2013.03.003
[3]   TIAN Wen-jie, LIU Shao-peng, LIU Xing-xing. Accuracy design of high precision machine tools using error sensitivity analysis methodology[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(18): 3401-3413. doi:10.1177/0954406216645625
doi: 10.1177/0954406216645625
[4]   GUO Jun-kang, LI Bao-tong, LIU Zhi-gang, et al. A new solution to the measurement process planning for machine tool assembly based on Kalman filter[J]. Precision Engineering, 2016, 43: 356-369. doi:10.1016/j.precisioneng.2015.08.016
doi: 10.1016/j.precisioneng.2015.08.016
[5]   何改云,李素乾,郭龙真,等.机床基础大件支撑预变形设计方法研究[J].机械科学与技术,2018,37(1):70-75.
HE Gai-yun, LI Su-qian, GUO Long-zhen, et al. Research on design methodology for support pre-deformation of large machine tools body[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 70-75.
[6]   洪军,郭俊康,刘志刚,等.基于状态空间模型的精密机床装配精度预测与调整工艺[J].机械工程学报,2013,49(6):114-121. doi:10.3901/jme.2013.06.114
HONG Jun, GUO Jun-kang, LIU Zhi-gang, et al. Assembly accuracy prediction and adjustment process modeling of precision machine tool based on state space model[J]. Journal of Mechanical Engineering, 2013, 49(6): 114-121.
doi: 10.3901/jme.2013.06.114
[7]   陈以磊,邱志惠,郭俊康,等.概念设计阶段机床基础大件质量的优化方法[J].西安交通大学学报,2017,51(7):105-114.
CHEN Yi-lei, QIU Zhi-hui, GUO Jun-kang, et al. Mass optimization of large machine tool components in conceptual design[J]. Journal of Xi'an Jiaotong University, 2017, 51(7): 105-114.
[8]   SUN Guang-ming, HE Gai-yun, WENG Ling-tao, et al. Research on assembly deformation of machine tool guideway[C]//2018 IEEE International Conference on Advanced Manufacturing (ICAM). New York: IEEE, 2018: 231-234. doi:10.1109/amcon.2018.8615106
doi: 10.1109/amcon.2018.8615106
[9]   HE Gai-yun, SHI Pan-pan, ZHANG Da-wei, et al. Stiffness matching method for the ball screw feed drive system of machine tools[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2985-2995. doi:10.1007/s12206-020-0630-5
doi: 10.1007/s12206-020-0630-5
[10]   DENG Cong-ying, YIN Guo-fu, FANG Hui, et al. Dynamic characteristics optimization for a whole vertical machining center based on the configuration of joint stiffness[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5/8): 1225-1242. doi:10.1007/s00170-014-6355-9
doi: 10.1007/s00170-014-6355-9
[11]   邵灵芝.五轴联动龙门加工中心热变形分析及结构优化[D].南京:东南大学,2017:29-32.
SHAO Ling-zhi. Thermal deformation analysis and structural optimization of five-axis linked gantry machining center[D]. Nanjing: Southeast University, 2017: 29-32.
[12]   LI Bao-tong, HONG Jun, WANG Zhao, et al. Optimal design of machine tool bed by load bearing topology identification with weight distribution criterion[J]. Procedia CIRP, 2012, 3: 626-631. doi:10.1016/j.procir. 2012.07.107
doi: 10.1016/j.procir. 2012.07.107
[13]   ZULAIKA J J, CAMPA F J, DE LACALLE L N L. An integrated process:Machine approach for designing productive and lightweight milling machines[J]. International Journal of Machine Tools and Manufacture, 2011, 51(7/8): 591-604. doi:10.1016/j.ijmachtools. 2011.04.003
doi: 10.1016/j.ijmachtools. 2011.04.003
[14]   LIU Shi-hao, LI Yue, LIAO Yu-lan, et al. Structural optimization of the cross-beam of a gantry machine tool based on grey relational analysis[J]. Structural and Multidisciplinary Optimization, 2014, 50(2): 297-311. doi:10.1007/s00158-013-1041-3
doi: 10.1007/s00158-013-1041-3
[15]   LIU Shi-hao. Multi-objective optimization design method for the machine tool’s structural parts based on computer-aided engineering[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78: 1053-1065. doi:10.1007/s00170-014-6700-z
doi: 10.1007/s00170-014-6700-z
[16]   申远,金一,褚彪,等.基于遗传算法的锻压机床多目标优化设计方法[J].中国机械工程,2012,23(3):291-294. doi:10.3969/j.issn.1004-132X.2012.03.009
SHEN Yuan, JIN Yi, CHU Biao, et al. A multi-objective optimization method for forging machine based on genetic algorithm[J]. China Mechanical Engineering, 2012, 23(3): 291-294.
doi: 10.3969/j.issn.1004-132X.2012.03.009
[17]   邓聪颖,殷国富,方辉,等.基于正交试验的机床结合部动刚度优化配置[J].机械工程学报,2015(19):146-153. doi:10.3901/jme.2015.19.146
DENG Cong-ying, YIN Guo-fu, FANG Hui, et al. Optimal configuration of dynamic stiffness of machine tool joints based on orthogonal experiment[J]. Journal of Mechanical Engineering, 2015, 51(19): 146-153.
doi: 10.3901/jme.2015.19.146
[18]   ZHANG Zai-feng, SONG Jian-jun, LIU Yuan, et al. An integrated multidisciplinary design optimization method for computer numerical control machine tool development[J]. Advances in Mechanical Engineering, 2015, 7(2): 1-9. doi:10.1177/1687814014568504
doi: 10.1177/1687814014568504
[19]   徐燕申,张兴朝,牛占文,等.基于元结构和框架优选的数控机床床身结构动态设计研究[J].机械强度,2001,23(1):1-3,110. doi:10.3321/j.issn:1001-9669.2001.01.001
XU Yan-shen, ZHANG Xing-chao, NIU Zhan-wen, et al. Research of dynamic design of machine tools bed structures based on optimization unit structures and frames[J]. Journal of Mechanical Strength, 2001, 23(1): 1-3, 110.
doi: 10.3321/j.issn:1001-9669.2001.01.001
[20]   孙光明,焦锋,刘建慧.基于元结构的数控钻镗床床身静动特性分析及结构优化[J].现代制造工程,2014(2):41-41,69. doi:10.3969/j.issn.1671-3133.2014.02.011
SUN Guang-ming, JIAO Feng, LIU Jian-hui. Research on static and dynamic characteristic and structure optimization of bearing retainer special NC drilling machine tool bed[J]. Modern Manufacturing Engineering, 2014(2): 41-46, 69.
doi: 10.3969/j.issn.1671-3133.2014.02.011
[21]   LI Bao-tong, HONG Jun, LIU Zhi-feng. Stiffness design of machine tool structures by a biologically inspired topology optimization method[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 33-44. doi:10.1016/j.ijmachtools.2014.03.005
doi: 10.1016/j.ijmachtools.2014.03.005
[1] Chao XIE,Yunzhuang CHEN,Guangnan SHI,Leijie LAI. Design and compliance analysis of large stroke flexible ball hinge with orthogonal reeds[J]. Chin J Eng Design, 2023, 30(5): 626-633.
[2] Tao ZHANG,Kaisong WANG,Wei TANG,Kecheng QIN,Yang LIU,Yuhao SHI,Jun ZOU. Design and analysis of flexible bending actuator driven by electrohydrodynamic pumps[J]. Chin J Eng Design, 2023, 30(4): 467-475.
[3] Qin LI,Rui YAN,Zhiqiang HUANG,Gang LI. Research on matching design and optimization of drive motor of electric drive vibroseis[J]. Chin J Eng Design, 2023, 30(2): 172-181.
[4] Guangming SUN,Dawei ZHANG,Mingze SUN,Pengfei XU,Faze CHEN,Zhijun LI. Research on error averaging mechanism of linear feed system for precision machine tools[J]. Chin J Eng Design, 2023, 30(2): 200-211.
[5] San-ping LI,Teng-jia SUN,Long-qiang YUAN,Li-guo WU. Design and experimental research of pneumatic soft picking manipulator[J]. Chin J Eng Design, 2022, 29(6): 684-694.
[6] Zhi-bo ZHAO,Da-qiang GU,Li-xin LI,Jing ZHANG. Modification design of cycloidal gear based on contact stress optimization[J]. Chin J Eng Design, 2022, 29(6): 713-719.
[7] Zheng-feng ZHANG,Xiao-yu SONG,Xiao-lei YUAN,Wen-juan CHEN,Wei-dong ZHANG. Reliability optimization design for crashworthiness of Al/CFRP hybrid thin-walled structure[J]. Chin J Eng Design, 2022, 29(6): 720-730.
[8] Fei FENG,Yu-chen FU,Wei FAN,Ju MA. Design and performance analysis of triangular hybrid two-stage lever micro-displacement amplification mechanism[J]. Chin J Eng Design, 2022, 29(2): 161-167.
[9] CHEN Hong-yue, ZHANG Zhan-li, LU Zhang-quan. Design and performance study of cylindrical arm coil spring for linear compressor[J]. Chin J Eng Design, 2021, 28(4): 504-510.
[10] WANG Cheng-jun, LI Shuai. Design and bending performance analysis of three-joint soft actuator[J]. Chin J Eng Design, 2021, 28(2): 227-234.
[11] ZHOU Chao, QIN Rui-jiang, RUI Xiao-ming. Analysis of mechanical properties of V-shaped insulator string under wind load[J]. Chin J Eng Design, 2021, 28(1): 95-104.
[12] HUANG Wei, XU Jian, LU Xin-zheng, HU Ming-yi, LIAO Wen-jie. Research on dynamic vibration absorption for power equipment and building floor[J]. Chin J Eng Design, 2021, 28(1): 25-32.
[13] ZHOU Chao, WANG Yang, RUI Xiao-ming. Finite element analysis and experimental study on wind-induced swing of 500 kV transmission line jumper wire[J]. Chin J Eng Design, 2020, 27(6): 713-719.
[14] LI Cheng-bing, LEI Peng. Stress analysis and weak roof performance evaluation for 5 000 m3vertical dome storage tank[J]. Chin J Eng Design, 2020, 27(2): 182-190.
[15] HE Gai-yun, ZHANG Xiao-lei, ZHANG Da-wei, SUN Guang-ming. Research on three-dimensional evaluation method for repeated positioning accuracy of machine tool linear axis[J]. Chin J Eng Design, 2019, 26(4): 371-378.